Profibus[®] Supplemental Manual for Brooks[®] GF40/GF80 Series Mass Flow Controllers and Meters

Dear Customer,

We recommend that you read this manual in its entirety as this will enable efficient and proper use of the Profibus Mass flow controllers and meters. Should you require any additional information concerning the Profibus Mass flow controllers and meters, please feel free to contact your local Brooks Sales and Service Office; see back cover for contact information, or visit us on the web at www.BrooksInstrument.com. We appreciate this opportunity to service your fluid measurement and control requirements, and trust that we will be able to provide you with further assistance in future.

Yours sincerely, Brooks Instrument

Section Number		<u>Page</u> Number
1 Introduct		
1.1	Introduction	1-1
2 Definitio	n of Terms	
2.1	Definition of Terms	2-1
3 Before S	tarting	
3.1	Background and Assumptions	
3.2	Numbers	
4 Quick St	art	
4.1	Assumption	
4.2	Supported Baud Rates	
4.3	Address Selection	
4.4	Bus and Device LEDs	
4.5	Power Supply and Analog I/O	
	nfiguration	
5.1	Introduction	
5.2	Parameterization of the Slave (GF04x08x Series Devices)	
5.3 5.4	Configuration of the Slave Device Diagnostics	
6.1	clic Data Exchange DPV0 Cyclic Data Exchange	
	yclic Data Communication	
7.1	Device Block Model	
7.2	Slot and Index (Attribute) Mapping	
7.3	Identification and Maintenance (I&M0)	
7.4 7.5	TMF (Thermal Mass Flow) Device Physical Block (Slot 0; PB_1) TMF (Thermal Mass Flow) Sensor Transducer Block (Slot 4; TB_1)	
7.5	Note: Attribute 0	
-	Note: Attribute 2	
7.5.3	Note: Attribute 3	
7.6	Analog Sensor Function Block (Slot 1; FB_1)	
7.7	Controller Function Block (Slot 2; FB_2) (Not Supported by MFM)	
7.7.1	Note: Attribute 0	
7.7.2	Note: Attribute 4-7	
7.8	Acuator Function Block (Slot 3; FB_3) (Not Supported by MFM)	
7.8.1	Note: Attribute 0	
7.9	Actuator Transducer Block (Slot 5; FB_2) (Not Supported by MFM)	
8 Appendi		
8.1	Appendix A Data Type Definitions	
8.2	Appendix B Data Units	
8.3	Appendix C Profibus Safe State	

<u>Figure</u> Number

Page Number

4-1	Profibus Label on Cover	4-1
5-1	Device Diagnostic Byte	5-5
7-1	Device Block Model	7-1
7-2	Slot and Index Mapping	7-2

<u>Table</u> Number

Page Number

nfiguring the Address Switches	4-2
T LED Specifications	4-2
D LED Specifications	4-3
V0 Input/Output Modules for Device Type MFC	5-4
le Legend	7-2
umetric Flow Units Table	
ssure Units Table	8-2
ected Calibration Data Units	8-2
nperature Units Table	8-2
w Totalizer Data Units Table	8-2
ibration Instance Table	8-3
ve Drive Safe State Table	8-3
ve Override Table	8-3
w Control Ramp Time Table	8-3
w Control Mode Table	
	ssure Units Table

Installation and Operation Manual

X-DPT-Profibus-GF40-GF80-MFC-eng Part Number: 541B162AAG November, 2012

Brooks® GF40/GF80 Profibus®

1 Introduction

Many applications of Flow Controllers/Meters are moving to increasing the use of automation. Automation comes in many forms: PLC's (Programmable Logic Controllers), DCS's (Distributed Control Systems) and PC based solutions (National Instrument's Labview[™]). Digital communications from these varied systems and the devices they measure and control are a very effective means of not only accomplishing more effective and rapid system integration, but also providing greatly improved system diagnostics and maintainability. Profibus is an open, digital communication system with a wide range of applications, particularly in the fields of factory and process automation. Brooks Instrument has several of its devices available on this universal fieldbus technology and is a member of the Profibus organization.

X-DPT-Profibus-GF40-GF80-MFC-eng Part Number: 541B162AAG November, 2012

Brooks® GF40/GF80 Profibus®

2.1 Definition of Terms

Abbreviation	Description
MFC/MFM	Mass Flow Controller/Mass Flow Meter
MSB	Most Significant Bit
LSB	Least Significant Bit
NA	Not Applicable

3.1 Background and Assumptions

This manual is a supplement to the Brooks GF40/GF80 Series installation and operation manual. It is assumed that the owner of this Profibus MFC/MFM is thoroughly familiar with the theory and operation of this device. If not, it is recommended that the owner reads the installation and operation manual first before continuing with this supplement.
This manual assumes basic knowledge and understanding of Profibus (its topology and its method of logically accessing the data or parameters contained within the device). This manual is not intended to be a replacement to the Profibus specifications. It is recommended but not required for the purposes of this manual, that the user obtains a copy of the Profibus specifications (<u>www.profibus.com</u>).
This manual does not make any assumptions about any particular manufacturer of equipment or custom software used by the user to communicate with the Brooks device, but assumes the user has thorough understanding of any configuration activates of a contained of any configuration activates of a contained any configuration activates of a contained of the provide the provide any configuration activates of a contained by the user to communicate with the Brooks device, but assumes the user has thorough understanding of a contained any configuration activates of a contained any conf

understanding of such equipment and any configuration software. Application Notes and FAQ's are available at the Brooks Instrument web site (www.BrooksInstrument.com).

3.2 Numbers

Numeric values used throughout this manual will be clearly denoted as to the base numeric system it represents. All hexadecimal numbers (base 16) will be prefixed with a 0x, like 0xA4. All binary numbers (base 2) will be suffixed with a "b", (example:1001b). All other numbers not annotated this way will be assumed decimal (base 10).

4.1 Assumption

This section assumes the owner of the Digital Series device has a fully operational and trouble-free communications network with appropriate power supplies. This section also assumes that one or two master type of devices are connected to the Profibus network capable of DPV0 cyclic and DPV1 acyclic data communication. Both types of data communication modes are supported by the Brooks GF40/GF80 Profibus device.

4.2 Supported Baud Rates

Data communication can be performed at a number of baud rates: 9600, 19.2K, 45.45K, 93.75K, 187.5K, 500K, 1.5M, 3M, 6M and 12M baud. The communication electronics allows for automatic baud rate detection, thus making the need for any hardware baud rate selection methods not required.

4.3 Address Selection

A Profibus slave device needs a valid address in order to get into data exchange mode with a Profibus master. The address range is 2..126 and can be configured using 2 rotary switches with an arrow indicator. The MSD (Most Significant Digit) switch supports 16 positions and is used to specify 10, 20, 30..120, the LSD (Least Significant Digit) is used to specify the 0, 1, 2.. 9. Default the address selectors will be set to the P (Programmable) position for the MSB and the 0 position for the LSB, see picture below. The P position allows for using the "Set Slave" functionality of a class 2 master device to change the default address, i.e. 126, to an address in the range of 2..125. If the rotary switches are configured into any other position than P the "Set Slave" functionality cannot be used and the address will be retrieved from the rotary switch positions.

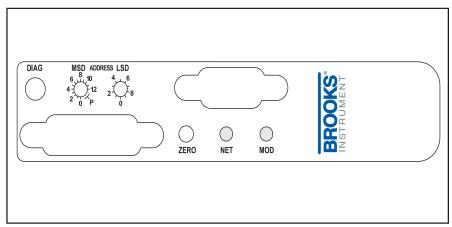


Figure 4-1 Profibus Label on Cover

Table 4-1 (Configuring	the Address	Switches
-------------	-------------	-------------	----------

Scenario	Current Address	New Address	Required Action
1	P (126)	P(2125)	Default the MSD rotary switch will be set to the P position and the LSD to the 0 position, the selected address will show up as 126 in the Profibus master. This is an invalid address which can not be used to get a device into Profibus data exchange mode. The P (Programmable) position allows for digitally programming the address using the DPV1 "Set Slave Address" functionality. Once this function has been used to change the address to an address in the range of 2125, the device can be put into data exchange mode using the newly programmed address without a power cycle. Note that the rotary switch position may not be changed.
2	P (126), P (2125)	2125	When the rotary switches are changed from a programmable to a hard station address, the power must be cycled on the device in order to recognize the new station address. The new station address is indicated by the rotary switches.
3	2125	2125	When the rotary switches are changed from a hard station address to another hard station address, the power must be cycled on the device in order to recognize the new station address. The new station address is indicated by the rotary switches.
4	2125	P (2125), P (126)	When the rotary switches are changed from a hard station address to programmable, the power must be cycled on the device in order to recognize that the station address is programmable. The station address will be set to the saved station address (2125), i.e. saved in non-volatile memory at the point in time when the DPV1 "Set Slave Address" function was executed. In case the DPV1 "Set Slave Address" function has never been used or scenario 5 was used to reset the saved station address, the station address will show up as 126 in the Profibus master. Scenario 1 or 2 can be used to select a valid station address.
5	P (2125)	P (126)	 In case the saved station address needs to be reset to the default 126 value, the following procedure needs to be performed: Verify that the MSD address switch is in the P position and the device is powered Turn the MSD switch to a position in the range 112 Turn the MSD switch back to the P position Power cycle the device The station address will show up as 126 in the Profibus master and scenario 1 or 2 can be used to select a valid station address.

4.4 Bus and Device LEDs

The device supports a NET and MOD LED to indicate the status of network communication and the device. The NET LED will indicate the following:

Flash Code	Description
Off	No Network Connected
Flashing Green	Network Connected
Solid Green	Communications Established (DP and/or V1)
Flashing Red	Configuration Error
Flashing	Parameterization Error

Hardware Error

Table 4-2 NET LED Specifications

Red/Green Solid Red

The MOD LED will indicate the following:

Table 4-3 MOD LED Specifications

Flash Code	Description					
Flashing Red/Green	The device is in the Self-Test mode					
Solid Green	All self-tests have passed. No faults have been detected					
Flashing Red	A recoverable fault has been detected or the device has been commanded into the Abort state					
Solid Red	An unrecoverable fault has occurred					

4.5 Power Supply and Analog I/O

Power needs to be supplied via the separate 15 pin D-Sub connector. This connector also provides access to analog I/O signals, see the table below.

Pin No.	Function at Remote Connector
1.	Setpoint Signal Ground
2.	Flow Voltage Output
3.	Alarm Output
4.	Flow Current Output
5.	Positive Supply Voltage
6.	Not Used
7.	Setpoint Current Input
8.	Setpoint Voltage Input
9.	Power Supply Common
10.	Flow Signal Ground
11.	Not Used
12.	Valve Override Input
13.	Not Used
14.	Not Used
15.	Not Used

Table 4-4 Pin Layout of 15 Pin D-Sub Connector

X-DPT-Profibus-GF40-GF80-MFC-eng Part Number: 541B162AAG November, 2012

Brooks® GF40/GF80 Profibus®

5.1 Introduction

The purpose of the Profibus field bus system is to exchange data between the master and its slave devices. In addition to Input/Output data which are exchanged when the slave device is in data exchange mode, also parameter, configuration and diagnostic data is transferred. Many Profibus masters need a configuration program to setup the Profibus network and configure slave devices, e.g. Siemens Step7 for the S7 controller. These programs require a device configuration file called GSD file and can be retrieved from the www.profibus.com web site.

For the Profibus network configuration of the GF40/GF80 Series Profibus devices the following GSD file is provided:

BIMFCC00.GSD - GF40/GF80 Series Mass Flow Controller/Meter

5.2 Parameterization of the Slave (GF40/GF80 Series Devices)

During the initialization phase of the slave device the master configures the slave with the so called user parameters, this part of the initialization phase is called the parameterization. Using the master configuration program these user parameters can be changed, giving the slave device a different configuration during initialization.

Table 5-1 Complete DP Parameterization

Γ	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8	Byte9	Byte1	Byte1		Byte-n
											0	1		_
	As defined by							As defined by DP-V1		DP	Device parameter		neter	
	DP specification							S	pecificatio	on	oper-		bytes	
	·										ation			

Bit 0 (DP parameterization enable) of Byte 10 ('DP Operation') of the DP Parameterization defines if parameterization over DP is enabled, or if the parameterization data is ignored to allow configuration through acyclic data transfer. The structure of the 'DP operation' byte is defined as follows.

Bit field									
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1									
	Reserved								
			-				0 = disabled 1 = enabled		

Bytes 11 through n (number of parameterization bytes depends on device type) contain the device parameterization data that will configure the device when DP Parameterization is enabled. The bytes are defined as follows.

byte	Attribute Name	Block	Description Instance ID		Defaul	t Value		
Dyte	Indille	BIOCK	Description	Instance			Dec	Hex
11-12	Flow Data Units	Analog Sensor FB	Flow Data Units: Parameterizes the Data Units for the Analog Sensor FB. Refer to the Table 8-2 Volumetric Flow Units Table for a list of valid values.	FB_1	2	2	1342	0x053e
13-14	Selected Calibration Instance	TMF Sensor TB	Parameterizes the selected TB_1 4 2 calibration instance. Refer to Table 8-7 Calibration Instance Table for more details.		2	1	0x0001	
15-16	Temperature Data Units	TMF Device PB	Defines the engineering units for the temperature. Refer to Table 8-5 Temperature Units Table for more details.	PB_1	2	2	1001	0x03E9
17-18	Not Used	NA	NA.	NA	NA	2	0	0x0000
19	Valve Drive Safe State	Actuator FB	In case the device is commanded into safe state, the valve should be put into safe mode indicated by this setting. Refer to Table 8-8 Valve Drive Safe State Table for more details.	FB_3	7	1	1	0x01
20	Flow Control Alarm Enable	Controller FB	Parameterizes the flow control alarm enable. 0 = Disabled. 1 = Enabled.	FB_2	9	1	0	0x00
21	Flow Meter Alarm Enable	TMF Sensor TB	Parameterizes the flow meter alarm enable. 0 = Disabled. 1 = Enabled.	TB_1	12	1	0	0x00
22	Drive Valve Alarm Enable	Actuator FB	Parameterizes the drive valve alarm enable. 0 = Disabled. 1 = Enabled.	FB_3	8	1	0	0x00
23-24	Flow Controller Alarm Error Band	Controller FB	Allows the flow controller alarm error band to be preset in whole numbers from 0 to 32767 (equal to 0133.33%; 24575=100%)	FB_2	10	2	32767	0x7FFF

	Attribute		Description		Attrib	Size (bytes)	Default Value	
byte	Name	Block	Description	Instance	ID		Dec	Hex
25-26	Flow Meter Alarm Trip Point High	TMF Sensor TB	Allows the flow meter alarm trip point high to be preset in whole numbers from 0 to 32767 (equal to 0133.33%; 24575=100%)	TB_1	13	2	32767	0x7FFF
27-28	Flow Meter Alarm Trip Point Low	TMF Sensor TB	Allows the flow meter alarm trip point low to be preset in whole numbers from 0 to 32767 (equal to 0133.33%; 24575=100%)	TB_1	14	2	0	0x0000
29-30	Drive Valve Alarm Trip Point High	Actuator FB	Allows the drive valve alarm trip point high to be preset in whole numbers from 0 to 32767 (equal to 0133.33%; 24575=100%)	FB_3	9	2	32767	0x7FFF
31-32	Drive Valve Alarm Trip Point Low	Actuator FB	Allows the drive valve alarm trip point low to be preset in whole numbers from 0 to 32767 (equal to 0133.33%; 24575=100%)	FB_3	10	2	0	0x0000
33-36	Flow Control Ramp Time		Parameterizes the flow control ramp time. Refer to Table 8-10 Flow Control Ramp Time Table for more details.			4	0	0x00000 000
37	Flow Control Mode	Controller FB	Parameterizes the flow control mode. Refer to Table 8-11 Flow Control Mode Table for more details.	FB_2	8	1	0	0x00
38-39	Flow Totalizer Data Units	TMF Sensor TB	Defines the engineering unit for the flow totalizer. Refer to Table 8-6 Flow Totalizer Data Units Table for more details.	TB_1	16	2	1036	0x040C
40-41	Setpoint Data Units	Controller FB	Defines the engineering unit for the setpoint. Refer to Table 8-2 Volumetric Flow Units Table for more details.	FB_2	2	2	1342	0x053e

Tabla 5	2 Lloor	Doromotoro	Doood	Durina	Deremotorization	(continued)
Table J	-2 0361	raiameters	газзеи	Dunny	Parameterization	(continueu)

5.3 Configuration of the Slave

Using the master configuration program the user can select inputs and outputs which define the data to be exchanged in DPV0 data exchange mode. The following table lists the input and output modules which can be selected.

Table 5-3 DPV) Input/Output	Modules for	Device	Type MFC
---------------	----------------	-------------	--------	----------

		Input Data				
Configuration Byte	Attribute Name	Block	Instance	Attrib. ID	Description	Size (bytes)
0x43,0x03,0xA9,0x06,0x01	Process Variable (PV)	Analog Sensor FB	FB_1	0	The amount of flow going through the device in engineering units.	4
0x43,0x03,0x32,0x06,0x01	Drive Valve Value	Actuator FB	FB_3	2	The value of the analog output signal used to drive the physical actuator.	4
0x43,0x03,0xA4,0xBD,0x01	Temperature	TMF Sensor TB	TB_1	11	Temperature of the device in engineering units. Refer to Table 8-5 Temperature Units Table for more details.	4
0x43,0x03,0x33,0x06,0x01	Setpoint	Controller FB	FB_2	1	The amount of flow that device will control to in engineering units. Refer to Table 8-2 Volumetric Flow Units Table for more details.	4
0x43,0x00,0x32,0x05,0x01	Valve Override	Actuator FB	FB_3	6	The override of the physical actuator. Refer to Table 8-9 Valve Override Table for more details.	1
0x43,0x01,0xA9,0x23,0x01	Selected Calibration Instance	TMF Sensor TB	TB_1	4	The active calibration instance. Refer to the Table 8-7 Calibration Instance Table for more details.	2
0x43,0x03,0xA9,0x5F,0x01	Flow Totalizer	<u>TMF Sensor TB</u>	TB_1	15	The total amount of volume through the device as a long integer in engineering units. Refer to Table 8-6 Flow Totalizer Data Units Table for more details.	4
0x43,0x00,0xA9,0x1C,0x01	Sensor Zero Status	TMF Sensor TB	TB_1	3	Indicates the status of the zero flow meter: 1 = In progress. 0 = Idle.	1
0x43,0x00,0xA9,0x70,0x01	Zero Flow Meter	TMF Sensor TB	TB_1	2	Indicates the zero flow meter state: 1 = Zero adjust initiated. 0 = No zero adjust.	1

	1	Output Data				
Configuration Byte	Attribute Name	Block	Instance	Attrib. ID	Description	Size (bytes)
0x83,0x03,0x33,0x06,0x01	Setpoint	Controller FB	FB_2	1	The amount of flow the device will control to in engineering units. ¹	4
0x83,0x00,0x32,0x05,0x01	Valve Override	Actuator FB	FB_3	6	Specifies a direct override of the physical actuator. Refer to Table 8-9 Valve Override Table. ¹	1
0x83,0x00,0xA9,0x70,0x01	Sensor Zero Adjust	TMF Sensor TB	TB_1	2	Initiates a Zero Adjust.	1
0x83,0x01,0xA9,0x23,0x01	Selected Calibration Instance	TMF Sensor TB	TB_1	4	Selects the active calibration instance. Refer to Table 8-7 Calibration Instance Table.	2

Table 5-3 DPV0 Input/Output Modules for Device Type MFC (continued)

¹ If the flow controller is set to analog mode, then the setpoint and valve override cannot be written.

5.4 Device Diagnostics

	The device supports 2 diagnostic bytes, below the layout of these bytes.									
Byte nr	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0		
1	Reserved	Reserved	Valve High	Valve Low	Flow Controller Error Band	Flow High	Flow Low	Reserved		
2	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	DPV0 Calibration Instance		

Figure 5-1 Device Diagnostic Byte

In case of a Mass Flow Meter (MFM) the Valve high/low and the Flow Controller Error Band Alarms are disabled.

If the 'Selected Calibration' module is used in DPV0 cyclic communication, make sure that it's set to a valid value, otherwise the 'DPV0 calibration instance' diagnostic indication will be raised.

A bit set to 1 indicates that the alarm has occured.

X-DPT-Profibus-GF40-GF80-MFC-eng Part Number: 541B162AAG November, 2012

Brooks® GF40/GF80 Profibus®

6.1 DPV0 Cyclic Data Exchange

Once the device has gone through the parameterization and DPV0 input and output modules have been selected the master will direct the slave into DPV0 cyclic data exchange mode, see Section 5.2 Parameterization of the Slave (GF40/GF80 Series Device) and Section 5.3 Configuration of the Slave. In this mode data is exchanged between master and slave on a periodic basis. The input is data which is going from slave to master and output is data which is going from master to slave.

X-DPT-Profibus-GF40-GF80-MFC-e Part Number: 541B162AAG November, 2012

Brooks® GF40/GF80 Profibus®

7.1 Device Block Model

The Profibus interface provides access to device data. The device data is grouped in blocks, where each block is comprised of a set of indices that defines the configuration and represents the state of a logical function. An index provides access to specific data within a functional block. The structure of modeling these acyclic parameters is taken from the Profibus PA standard. However the interface is not compliant to this Profibus PA standard but will follow the Profibus DP v1 specifications for acyclic parameter communication.

The following figure provides an overview of blocks, with their relationships, that can exist in a GF40/GF80 Series device.

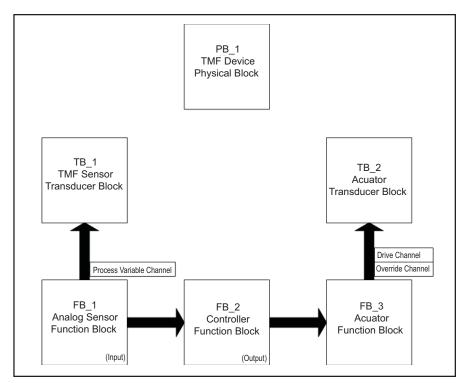


Figure 7-1 Device Block Model

7.2 Slot and Index (Attribute) Mapping

The figure below defines the mapping of available blocks for a Mass Flow Controller device into slots and indexes. Indexes are identified by the attribute number. The mapping complies with the PA definition (refer to Section 9.2 Mapping for Acyclic Data Transfer). One slot will only contain one block. This allows for extension of blocks,

One slot will only contain one block. This allows for extension of blocks, without the need to shift other blocks. This will maximize flexibility for future product extensions, while maintaining compatibility (i.e. the absolute address will not change).

Slot 0		
	PB_1 TMF Device Physical Block	
Index 0		Index 25
Slot 1		
	FB_1 Analog Sensor Function Block	
Index 0		Index 25
Slot 2		
	FB_2 Controller Function Block	
Index 0		Index 25
Slot 3		
	FB_3 Acuator Function Block	
Index 0		Index 25
Slot 4		
	TB_1 TMF Sensor Transducer Block	
Index 0		Index 25
Slot 5		
	TB_2 Acuator Transducer Block	
Index 0		Index 25

Figure 7-2 Slot and Index Mapping

A definition of blocks and attributes is given in the tables shown in the following paragraphs.

Table	7-1	Table	Legend
-------	-----	-------	--------

Table Column Heading	Description
Attribute ID	Identification of the index within the block
Attribute Name	Name of the index
Description	Description of the index
Object Type	Simple data type, Record (i.e. struct), or Array of simple data types
Data Type	Data format as defined in document 'Profibus DP Extensions to EN 50170, paragraph 10.5'.
Storage	Storage definition: Non-volatile, Dynamic (i.e. volatile) or Constant (no Static parameters are supported).
Number of Bytes	Data length in bytes
Access	readable and/or writable
DP Data Exchange	Defines if the attribute is accessible as an Input or Output parameter though cyclic data exchange (DP)
DP Param	Defines if the attribute can (P) or cannot (-) be set through the DP parameterization service

When the user requests an attribute from a block which is not supported by the configured device type (MFC/MFM) an invalid parameter response will be returned.

7.3 Identification and Maintenance Function (I&MO)

The I&M0 table is required as per DPV1 Profibus specification and contains data needed for identification and maintenance of the device

Block exist	tence: MFC, MFM								
Attribute ID	Attribute name	Description	Object type	Data type	Storage	Numb er of Bytes	Access	DP Data Exchange	DP Param
0	Header	Manufacturer Specific	Simple	Octet String (bitwise)	N	10	r	-	-
1	Manufacturers ID	Manufacturers identification number (10 = 0x000A = Brooks Instrument)	Simple	Unsigned16	N	2	r	-	-
2	Order ID	Manufacturers order number (GFxx)	Simple	Visible String	N	20	r	-	-
3	Serial Number	Serial number of the device assigned by the manufacturer.	Simple	Visible String	N	16	r	-	-
4	Hardware Revision	Revision level of the hardware in the device.	Simple	Visible String	N	2	r	-	-
5	Software Revision	Revision level of the firmware in the device.	Simple	Visible String	N	4	r	-	-
6	Revision Counter	A changed value of the REV_COUNTER parameter of a given module marks a change of hardware or of its parameters	Simple	Unsigned16	N	2	r	-	-
7	Profile ID	A module following a special profile may offer extended information (PROFILE_ SPECIFIC_TYPE) about its function and/or sub devices, e.g. HART (fixed to 0xF600)	Simple	Unsigned16	N	2	r	-	-
8	Profile Specific Type	In case a module follows a special profile this parameter offers information about the usage of its channels and/or sub devices (0x0000) (PA specific)	Simple	Unsigned16	N	2	r	-	-
9	IM Version	This parameter indicates the implemented version V1.1 of the I&M functions (0x01 and 0x01)	Simple	Unsigned8	N	2	r	-	-
10	IM Supported	This parameter indicates the availability of I&M records (0x0000)	Simple	Unsigned16	N	2	r	-	-

Reading the I&M0 table can be done by using the DPV1 write and read functionality sequentially. First you should perform a write to Slot 0 and Index 255, length is 4 bytes, of the following data 08, 00, FD, E8 in hex. This will set the subindex of the I&M0 record (i.e. 65000) and each sequential read to Slot 0 and Index 255 will return the I&M0 table. After a DPV1 abort and initiate the DPV1 write cycle needs to be performed again before retrieving the I&M0 table.

7.4 TMF (Thermal Mass Flow) Device Physical Block (Slot0; PB_1)

The TMF Device Physical Block provides access to general device parameters which are not included in I&MO.

Block exis	tence: MFC, MFM								
Attribute ID	Attribute name	Description	Object type	Data type	Storage	Number of Bytes	Access	DP Data Exchange	DP Param
0	Software Revision Digital Interface	Revision level of the firmware in the digital interface.	Simple	Visible String	N	8	r	-	-
1	Hardware Revision Digital Interface	Revision level of the hardware in the digital interface.	Simple	Unsigned16	N	2	r	-	-
2	Temperature Data Units	Defines the engineering unit of temperature. Refer to Table 8-5 Temperature Units Table.	Simple	Unsigned16	N	2	r/w	-	Ρ
5	Device Type	Defines the device type should always return MFC.	Simple	Unsigned8	N	1	r	-	-
6	Auxiliary Analog Selection	The selection of the auxiliary analog as a coded integer: 0 = 5 volts. 1 = 10 volts. Note that the auxiliary analog input currently is not supported.	Simple	Unsigned8	Ν	1	r/w ¹	-	-

¹ If the flow control mode is set to analog mode, then the auxillary analog selection can not be written.

7.5 TMF (Thermal Mass Flow) Sensor Transducer Block (Slot 4; TB_1)

The TMF Sensor Transducer Block provides access to device parameters for the purpose of configuring of a Thermal Mass Flow Sensor of the device.

						Number of			
Attribute ID	Attribute name	Description	Object type	Data type	Storage	Bytes	Access	DP Data Exchange	DP Param
0	Normalized Flow	The measured flow signal, normalized to a number from 0 to 100.	Simple	Floating-Point	D	4	r	-	-
		Refer to "7.5.1 Note: Attribute 0" on p. 7-7.							
2	Sensor Zero Adjust	Initiates a Zero Adjust. Refer to "7.5.2 Note: Attribute 2" on p. 7-7.	Simple	Unsigned 8	D	1	r/w	IO	Р
3	Sensor Zero Status	Indicates the status of a Zero Adjust action.	Simple	Unsigned 8	D	1	r	I	-
		Refer to "7.5.3 Note: Attribute 3" on p. 7-7.							
4	Selected Calibration	Selects the active flow sensor calibration.	Simple	Unsigned16	N	2	r/w	IO	Р
		Refer to Table 8-7 Calibration Instance Table							
5	Selected Calibration Data Units	Defines the engineering unit of the full scale attributes of the active flow sensor calibration.	Simple	Unsigned16	N	2	r	-	-
		Refer to Table 8-4 Selected Calibration Data Units.							
6	Selected Calibration Full-scale	This full-scale value applies to the factory calibration polynomial of the active flow sensor calibration.	Simple	Floating-Point	Ν	4	r/w	-	-
7	Selected Calibration Reference Pressure	The absolute pressure reference condition for the active flow sensor calibration, specified in kPa.	Simple	Floating-Point	N	4	r	-	-
8	Selected Calibration Reference Temperature	The temperature reference condition for the active flow sensor calibration.	Simple	Floating-Point	Ν	4	r	-	-
9	Selected Calibration Gas Name	Name of the process gas of the active flow sensor calibration.	Simple	Visible-String	N	64	r	-	-

7.5 TMF (Thermal Mass Flow) Sensor Transducer Block (Slot 4; TB_1) (Continued)

Block exis	tence: MFC, MFM								
Attribute ID	Attribute name	Description	Object type	Data type	Storage	Number of Bytes	Access	DP Data Exchange	DP Param
11	Temperature	Temperature specified in the data unit selected by attribute 2 of the Device Physical Block. Refer to "7.4 TMF" Device Physical Block" on p. 7-4.	Simple	Floating-Point	Ν	4	r	I	-
12	Flow Meter Alarm Enable	Configuration of the flow meter alarm enable. 0 = Disabled. 1 = Enabled.	Simple	Unsigned	N	1	r/w	-	Ρ
13	Flow Meter Alarm Trip Point High	Allows the flow meter alarm trip point high to be configured in whole numbers from 0 to 32767 (equal to 0133.33%; 24575=100%)	Simple	Unsigned 16	N	2	r/w	-	Ρ
14	Flow Meter Alarm Trip Point Low	Allows the flow meter alarm trip point low to be configured in whole numbers from 0 to 32767. (equal to 0133.33%; 24575=100%)	Simple	Unsigned 16	N	2	r/w	-	Ρ
15	Flow Totalizer	The amount of volume through the device as a long integer in engineering units referred to in Table 8-6 by the Flow Totalizer Data Units.	Simple	Unsigned 32	D	4	r/w	Ι	
16	Flow Totalizer Data Units	The flow totalizer data units as a coded integer. Refer to Table 8-6 Flow Totalizer Data Units	Simple	Unsigned 16	D	2	r/w	-	Ρ
17	Flow Analog Selection	The selection of the flow analog as a coded integer: 0 = 5 volts. 2 = 4 to 20 mA. 3 = 0 to 20 mA.	Simple	Unsigned 8	N	1	r/w ¹	-	-

¹ If the flow controller is set to analog mode, then the flow analog selection cannot be written.

7.5.1 Note: Attribute 0

November, 2012

The normalized flow is a measure for the amount of gas flowing through the device, where 0 means no flow, and 100 means a flow of 100% of the full scale as identified by attribute 'Selected Calibration Full Scale'.

7.5.2 Note: Attribute 2

Using the 'Sensor Zero Adjust' attribute, a flow sensor zero action can be initiated by setting the value to 1, as shown below.

Value	Zero Adjust Command Code	Description
0	Normal Operation	The device will continue normal operation and will not perform a zero adjust cycle.
1	Zero	Initiates a zero adjust cycle.

Use attribute 'Sensor Zero Status' to observe the status of a zero adjustment. Note that the storage for this attribute defined as dynamic. The device will reset the value to 0 after the user sets it.

7.5.3 Note: Attribute 3

Attribute 'Sensor Zero Status' will report the status of a zero adjustment, as shown below.

Value	Zero Adjust Command Code	Description
0	ldle	The device is not performing a zero adjust cycle.
1	Executing	The device is zeroing the sensor and has not yet finished the zero adjustment.

7.6 Analog Sensor Function Block (Slot 1; FB_1)

Block exist	tence: MFC, MFM								
Attribute ID	Attribute name	Description	Object type	Data type	Storage	Number of Bytes	Access	DP Data Exchange	DP Param
0	Process Variable (PV)	The amount of flow through the device. This value is corrected, converted and calibrated to report the actual value of flow in the engineering units configured by attribute 'Data Units'.	Simple	Floating- Point	D	4	r	I	-
1	PV Channel ²	Reference to the Sensor Transducer Block that provides the measurement value to this function block. Fixed to 0x0400.	Simple	Unsigned16	N	2	r	-	-
2	Flow Data Units	Defines the Engineering Units context of attributes 'Process Variable'. Refer to Table 8-2 for Volumetric Flow Units.	Simple	Unsigned16	Ν	2	r/w	-	Ρ

² Reference is a slot (MSB) and attribute (LSB) combination.

7.7 Controller Function Block (Slot 2; FB_2) (Not Supported by MFM)

Block exis	tence: MFC			1	-				
Attribute ID	Attribute name	Description	Object type	Data type	Storage	Number of Bytes	Access	DP Data Exchange	DP Param
0	Target Mode	Mode of operation of this Function Block	simple	Unsigned8	D	1	r/w	-	-
1	Setpoint ⁵	Note: Attribute 0 The amount of flow the device will control to. This value is represented in the engineering units defined by attribute 'Data Units'.	Simple	Floating- Point	D	4	r(/w) ³	ю	-
2	Setpoint Data Units	Flow control setpoint data units. Refer to Table 8-2 for Volumetric Flow Units.	Simple	Unsigned16	N	2	r/w	-	-
3	Control Value	The normalized output value (0100) of the controller (unit-less)	Simple	Floating- Point	D	4	r	I	-
4	Selected Controller PID Proportional Gain	Configuration of the PID controller proportional gain ⁴	Simple	Floating- Point	N	4	r/w	-	-
5	Selected Controller PID Integral Gain	Configuration of the PID controller integral gain ⁴	Simple	Floating- Point	N	4	r/w	-	-
6	Selected Controller PID Derivative Gain 1	Configuration of the PID controller derivative gain 1 ⁴	Simple	Floating- Point	N	4	r/w	-	-
7	Selected Controller PID Derivative Gain 2	Configuration of the PID controller derivative gain 2 ⁴	Simple	Floating- Point	N	4	r/w	-	-
8	Flow Control Mode	Mode of operation for flow control. Refer to Table 8-11 Flow Control Mode Table for more details.	Simple	Unsigned8	D	1	r/w	-	Ρ
9	Flow Control Alarm Enable	Configuration of the flow controller alarm enable. 0 = Disabled. 1 = Enabled.	Simple	Unsigned8	N	1	r/w	-	Ρ
10	Flow Controller Alarm Error Band	Allows the flow controller alarm error band to be configured in whole numbers from 0 to 32767. (equal to 0133.33%; 24575=100%)	Simple	Unsigned16	N	2	r/w	-	Ρ
11	Setpoint Analog Selection ⁵	The selection of the setpoint analog as a coded integer: 0 = 5 volts. 2 = 4 to 20 mA 3 = 0 to 20 mA	Simple	Unsigned8	Ν	1	r/w	-	-

³ Setpoint is only writable through acyclic data transfer when the Target Mode is set to manual.

⁴ Be aware that changing PID Gain settings might affect operation of the device.

⁵ If the flow control mode is set to analog mode, then the setpoint and setpoint analog selection cannot be written.

7.7.1 Note: Attribute 0

The target mode indicates the mode of operation of the Controller Function Block. The supported modes are described in the following table.

Code	Target Mode	Description
8 (0x08)	Automatic (default)	Attribute 'Setpoint' can only be written through cyclic data exchange. No write access is allowed through acyclic data
16 (0x10)	Manual	exchange. Attributes 'Setpoint' is independent of the cyclic data exchange and can only be written through acyclic data exchange.

7.8 Acuator Function Block (Slot 3; FB_3) (Not Supported by MFM)

Dia ala activi									
	tence: MFC					Number			
Attribute ID	Attribute name	Description	Object type	Data type	Storage	of Bytes	Access	DP Data Exchange	DP Param
0	Target Mode	Mode of operation of this Function Block	simple	Unsigned8	D	1	r/w	-	-
		Refer to "7.8.1 Note Attribute 0" on p. 7-11.							
1	Drive Channel ⁶	Reference to the 'Drive' attribute in the Actuator Transducer Block. Fixed to 0x0500	Simple	Unsigned16	С	2	r	-	-
2	Drive Value	The value of the analog output signal used to drive the physical actuator. In case of normally closed valve type same as Control Value, in case of normally opened valve type inverted to Control Value.	Simple	Floating- Point	D	4	r	I	-
3	Drive Valve Data Units	Defines the engineering unit for attribute 'Drive'. Note: the engineering unit [Percent] (1342) and can not be altered.	Simple	Unsigned16	С	2	r	-	-
4	Control Value	The normalized input value to the actuator (unit-less). (See Control Value of the Controller)	Simple	Floating- Point	D	4	r	-	-

⁶ Reference is a slot (MSB) and attribute (LSB) combination.

7.8 Acuator Function Block (Slot 3; FB_3) (Not Supported by MFM) (Continued)

Block exis	tence: MFC								
Attribute	Attribute name	Description	Object type	Data type	Storage	Number of Bytes	Access	DP Data Exchange	DP Param
5	Override Channel ⁶	Reference to the 'Override' attribute in the Actuator Transducer Block. Fixed to 0x0501	Simple	Unsigned16	С	2	r	-	-
6	Override ⁸	Specifies a direct override of the physical actuator, see Table 8-9 Valve Override Table	Simple	Unsigned8	D	1	r(/w) ⁷	Ю	-
7	Drive Valve Safe State	In case the device is commanded into the safe state the valve should be put into safe mode indicated by the Safe State, see Table 8-8 Valve Drive Safe State Table.	Simple	Unsigned8	D	1	r/w	-	Ρ
8	Drive Valve Alarm Enable	Configuration of the drive valve alarm enable. 0 = Disabled. 1 = Enabled.	Simple	Unsigned8	N	1	r/w	-	Ρ
9	Drive Valve Alarm Trip Point High	Allows the drive valve alarm trip point high to be configured in whole numbers from 0 to 32767. (equal to 0133.33%; 24575=100%)	Simple	Unsigned16	N	2	r/w	-	Ρ
10	Drive Valve Alarm Trip Point Low	Allows the drive valve alarm trip point low to be configured in whole numbers from 0 to 32767. (equal to 0133.33%; 24575=100%)	Simple	Unsigned16	N	2	r/w	-	Ρ

⁶ Reference is a slot (MSB) and attribute (LSB) combination.

⁷Attribute 'Override' is only writable through acyclic data transfer when the Target Mode is set to manual.

⁸ If the flow control mode is set to analog mode, then the valve override cannot be written.

7.8.1 Note: Attribute 0

The target mode indicates the mode of operation of the Actuator Function Block. The supported modes are described in the following table.

Code	Target Mode	Description
8 (0x08)	Automatic (default)	Attribute 'Override' can only be written through cyclic data exchange. No write access is allowed through acyclic data exchange.
16 (0x10)	Manual	Attributes 'Override' is independent of the cyclic data exchange and can only be written through acyclic data exchange.

7.9 Actuator Transducer Block (Slot 5; TB_2) (Not Supported by MFM)

Attribute ID	Attribute name	Description	Object type	Data type	Storage	Number of Bytes	Access	DP Data Exchange	DP Param
0	Drive	The value of the analog output signal used to drive the physical actuator in percent	Simple	Floating- Point	D	4	r	-	-
1	Override ¹	Specifies a direct override of the physical actuator. See Table 8-9 Valve Override Table.	Simple	Unsigned8	-	1	r/w	-	-

¹ If the flow control mode is set to analog mode, then the valve override cannot be written.

8.1 Appendix A Data Type Definitions

The following table lists Profibus data types used throughout this manual. The column C/C++ Encoding is given as a comparative common example reference.

Data Type	Size (bytes)	Description	Range	C/C++ Keyword
Signed8	1	An 8-bit signed integer value	-128 to 127	char
Unsigned8	Unsigned8 1 An 8-bit unsigned integer value		0 to 255	unsigned char
Signed16	Signed16 2 A 16-bit signed		-32768 to 32767	short int
Unsigned16	Unsigned16 2 A 16-bit unsigne		0 to 65535	unsigned short int
Signed32	4	A 32-bit signed integer value	-2147483648 to 2147483647	int
Unsigned32	4	A 32-bit unsigned integer	0 to 4294967296	unsigned int
Floating-Point	4	An IEEE-754 single precision floating point number	-3.8E38 to 3.8E38	float

8.2 Appendix B Data Units

	Table 8-	2 Volu	metric	Flow	Units	Table
--	----------	--------	--------	------	-------	-------

Value		Description	Symbol
Dec	Hex		
1342	0x053e	Percent	%
1347	0x0543	Cubic meter per second	m³/s
1348	0x0544	Cubic meter per minute	m ³ /min
1349	0x0545	Cubic meter per hour	m³/h
1351	0x0547	Liter per second	l/s
1352	0x0548	Liter per minute	l/min
1353	0x0549	Liter per hour	l/h
1357	0x054d	Cubic foot per minute	ft ³ /min
1358	0x054e	Cubic foot per hour	ft ³ /h
1511	0x05e7	Cubic centimeter per second	cm ³ /s
1512	0x05e8	Cubic centimeter per minute	cm ³ /min
1513	0x05e9	Cubic centimeter per hour	cm ³ /h
1577	0x0629	Milliliter per second	ml/s
1563	0x061b	Milliliter per minute	ml/min
1578	0x062a	Milliliter per hour	ml/h

Table 8-3 Pressure Units Table (See Section 5.2 of Process Control Profile)

Va	lue	Description	Symbol
Dec	Hex		
1141	0x0475	Pounds/square inch	psi
1137	0x0471	Bar	bar
1138	0x0472	Millibar	mbar
1145	0x0479	Kilograms/square centimeter	kgf/cm ²

Table 8-4 Selected Calibration Data Units

	Value		Description	Symbol
	Dec	Hex		
ļ	5120	0x1400	sccm	sccm
ļ	5121	0x1401	slm	slm

Table 8-5 Temperature Units Table

Val	ue	Description	Symbol
Dec	Hex		
1000	0x03e8	Kelvin	K
1001	0x03e9	Degrees Celsius	°C
1002	0x03ea	Degrees Fahrenheit	°F

Table 8-6 Flow Totalizer Data Units Table

<u>۱</u>	/alue	Description	Symbol
Dec	Hex		
1034	0x040A	Cubic meters	m ³
1036	0x040C	Cubic centimeters	cm ³
1038	0x040E	Liters	L
1040	0x0410	Milliliters	ml
1043	0x0413	Cubic feet	ft ³

١	/alue	Description
Dec	Hex	
1	0x01	Calibration instance 1
2	0x02	Calibration instance 2
3	0x03	Calibration instance 3
4	0x04	Calibration instance 4
5	0x05	Calibration instance 5
6	0x06	Calibration instance 6

Table	8-7	Calibration	Instance	Table
rabio	• •	ounoration	motaneo	rabio

Table 8-8 Valve Drive Safe State Table

\	/alue	Description
Dec	Hex	
0	0x00	Normal
1	0x01	Closed
2	0x02	Open
3	0x03	Hold

Table 8-9 Valve Override Table

Value		Description
Dec	Hex	
0	0x00	Normal
1	0x01	Off
2	0x02	Purge

Table 8-10 Flow Control Ramp Time Table

Value		Description
Dec	Hex	
0	0x0000	Fast
5000	0x1388	5 seconds
8000	0x1F40	8 seconds
12500	0x30D4	12.5 seconds
25000	0x61A8	25 seconds
50000	0xC350	50 seconds

Table 8-11 Flow Control Mode Table

v	alue	Description
Dec	Hex	
0	0x00	Digital
1	0x01	Off
2	0x02	Purge
128	0x80	Analog

8.3 Appendix C Profibus Safe State

When the GF40/GF80 MFC loses Profibus communications, it can enter a safe state. This safe state can be configured through the "valve drive safe state" in the user parameters.

The safe state can be set to normal, hold, close, or open. The normal safe state action will not perform any action and can be used if the device is controlled using the analog setpoint source without Profibus communication. The hold safe state action will hold the setpoint at the current setting. The close safe state action will set the setpoint to zero. The open safe state action will set the setpoint to the configured high range.

Brooks[®] GF4/GF80 Profibus[®]

LIMITED WARRANTY

Seller warrants that the Goods manufactured by Seller will be free from defects in materials or workmanship under normal use and service and that the Software will execute the programming instructions provided by Seller until the expiration of the earlier of twelve (12) months from the date of initial installation or eighteen (18) months from the date of shipment by Seller.

Products purchased by Seller from a third party for resale to Buyer ("Resale Products") shall carry only the warranty extended by the original manufacturer.

All replacements or repairs necessitated by inadequate preventive maintenance, or by normal wear and usage, or by fault of Buyer, or by unsuitable power sources or by attack or deterioration under unsuitable environmental conditions, or by abuse, accident, alteration, misuse, improper installation, modification, repair, storage or handling, or any other cause not the fault of Seller are not covered by this limited warranty, and shall be at Buyer's expense.

Goods repaired and parts replaced during the warranty period shall be in warranty for the remainder of the original warranty period or ninety (90) days, whichever is longer. This limited warranty is the only warranty made by Seller and can be amended only in a writing signed by an authorized representative of Seller.

BROOKS LOCAL AND WORLDWIDE SUPPORT

Brooks Instrument provides sales and service facilities around the world, ensuring quick delivery from local stock, timely repairs and local based sales and service facilities.

Our dedicated flow experts provide consultation and support, assuring successful applications of the Brooks flow measurement and control products.

Calibration facilities are available in local sales and service offices. The primary standard calibration equipment to calibrate our flow products is certified by our local Weights and Measures Authorities and traceable to the relevant international standards. Brooks is committed to assuring all of our customers receive the ideal flow solution for their application, along with outstanding service and support to back it up. We operate first class repair facilities located around the world to provide rapid response and support. Each location utilizes primary standard calibration equipment to ensure accuracy and reliability for repairs and recalibration and is certified by our local Weights and Measures Authorities and traceable to the relevant International Standards.

Visit www.BrooksInstrument.com to locate the service location nearest to you.

START-UP SERVICE AND IN-SITU CALIBRATION

Brooks Instrument can provide start-up service prior to operation when required. For some process applications, where ISO-9001 Quality Certification is important, it is mandatory to verify and/or (re)calibrate the products periodically. In many cases this service can be provided under in-situ conditions, and the results will be traceable to the relevant international quality standards.

CUSTOMER SEMINARS AND TRAINING

Brooks Instrument can provide customer seminars and dedicated training to engineers, end users, and maintenance persons.

Please contact your nearest sales representative for more details.

HELP DESK

In case you need technical assistance:

888 275 894
11 +31 (0) 318
🐨 +49 351 21
🐨 +81 3 5633

46 549290 5 2040 7100

📧 +82 31 708 2521 +886 3 5590 988 +86 21 5079 8828 Singapore 🛣 +6297 9741

Due to Brooks Instrument's commitment to continuous improvement of our products, all specifications are subject to change without notice.

Korea

Taiwan

China

TRADEMARKS

Brooks	Brooks Instrument, LLC
LabView	National Instruments
Profibus	PROFIBUS International

Brooks Instrument 407 West Vine Street P.O. Box 903 Hatfield, PA 19440-0903 USA T (215) 362 3700 F (215) 362 3745 E-Mail BrooksAm@BrooksInstrument.com www.BrooksInstrument.com

Brooks Instrument Neonstraat 3 6718 WX Ede, Netherlands T +31 (0) 318 549 300 F +31 (0) 318 549 309 E-Mail BrooksEu@BrooksInstrument.com E-Mail BrooksAs@BrooksInstrument.com

Brooks Instrument 1-4-4 Kitasuna Koto-Ku Tokyo, 136-0073 Japan T +81 (0) 3 5633 7100 F +81 (0) 3 5633 7101

