Tension/compression force transducer With thin-film technology up to 100 kN Models F2301, F23C1, F23S1

Ex c - us IEC TEEEx

Applications

- Crane systems and hoists
- Industrial weighing technology
- Machine building and plant construction, manufacturing automation
- Theatre and stage construction
- Chemistry and petrochemistry

Special features

- Measuring ranges $0 \ldots 1 \mathrm{kN}$ up to $0 \ldots 100 \mathrm{kN}$

■ Corrosion-resistant stainless steel design

- Integrated amplifier

■ High long-term stability, high shock and vibration resistance
■ Good reproducibility, simple installation

Description

Tension/compression force transducers are designed for static and dynamic measurement tasks in the direct flux of force. They determine the tension and compression forces in a wide scope of applications.

Tension/compression force transducers of this series are often used in hoist and crane systems, as well as for special machine constructions, in laboratories and stage systems.
Appropriate technical and regional approvals are available as an option.

These force transducers are made of high-strength, corrosion-resistant stainless steel 1.4542 , which is particularly suitable for their application areas. The standard active current and voltage outputs are available as output signals ($4 \ldots 20 \mathrm{~mA} / 0 \ldots 10 \mathrm{~V}$). Redundant output signals and CAN protocols are possible.

These force transducers are part of our certified product ELMS1 overload protection (DIN EN ISO 13849-1 with PL d/Kat. 3 and SIL 2).

Specifications in accordance with VDI/VDE/DKD 2638

Model	F2301	F23S1
Rated force $\mathrm{F}_{\text {nom }} \mathrm{kN}$	1, 2, 3, 5, 10, 20, 30, 50, 100	3, 5, 10, 20, 30, 50, 100
Relative linearity error $\mathrm{d}_{\text {lin }}{ }^{1}$)	$\pm 0.5 \% \mathrm{~F}_{\text {nom }}$	
Relative reversibility error v	< 0.1 \% $\mathrm{F}_{\text {nom }}$	
Relative creep, 30 min . at $\mathrm{F}_{\text {nom }}$	$0.1 \% \mathrm{~F}_{\text {nom }}$	
$\begin{aligned} & \text { Temperature effect on } \\ & \text { characteristic value } \mathrm{TK}_{\mathrm{c}} \\ & \text { zero signal } \mathrm{TK}_{0} \end{aligned}$	$\begin{aligned} & 0.4 \% F_{\text {nom }} / 10 \mathrm{~K} \\ & 0.4 \% \mathrm{~F}_{\text {nom }} / 10 \mathrm{~K} \end{aligned}$	
Force limit F_{L}	$150 \% \mathrm{~F}_{\text {nom }}$	
Breaking force F_{B}	$>300 \% \mathrm{~F}_{\text {nom }}$	
Permissible oscillation stress F_{rb}	$\pm 50 \% \mathrm{~F}_{\text {nom }}$ (in accordance with DIN 50100)	
Rated displacement (typ.) $\mathrm{s}_{\text {nom }}$ $<10 \mathrm{kN}$ - < 100 kN	$\begin{aligned} & <0.02 \mathrm{~mm} \\ & <0.2 \mathrm{~mm} \end{aligned}$	
Material of measuring device	Stainless steel corrosion-resistant, ultrasonically tested 3.1 material (optional 3.2)	
Rated temperature $\mathrm{B}_{\mathrm{T} \text {, nom }}$	$-20 \ldots+80^{\circ} \mathrm{C}$	
Operating temperature $\mathrm{B}_{\mathrm{T}, \mathrm{G}}$	$-30 \ldots+80^{\circ} \mathrm{C}$ (optional $-40 \ldots+80^{\circ} \mathrm{C}$)	$-30 \ldots+80^{\circ} \mathrm{C}$
Storage temperature $\mathrm{B}_{\mathrm{T}, \mathrm{S}}$	$-40 \ldots+85^{\circ} \mathrm{C}$	
Electrical connection	Circular connector M 12x1, 4-pin, CANopen ${ }^{\circledR} 5$-pin	2-circular connector M 12x1, 4-pin
Output signal (rated output) $\mathrm{C}_{\text {nom }}$	4 ... 20 mA , 2-wire, $4 \ldots 20 \mathrm{~mA}, 3$-wire or DC $0 \ldots 10$ V, 3-wire (Optional redundant signal) CANopen ${ }^{\circledR}$ Protocol in accordance with CiA 301, device profile 404, communication services LSS (CiA 305), configuration of the instrument address and baud rate Sync/Async, Node/Lifeguarding, heartbeat; zero and span $\pm 10 \%$ adjustable via entries in the object directory ${ }^{2)}$	Redundant, opposing $4 \ldots 20 \mathrm{~mA} / 20 \ldots 4 \mathrm{~mA}$ versions in accordance with requirements for functional safety per 2006/42/EC Machinery Directive
Current consumption	Current output $4 \ldots 20 \mathrm{~mA} 2$-wire: signal current Current output $4 \ldots 20 \mathrm{~mA}, 3$-wire: $<8 \mathrm{~mA}$ Voltage output: < 8 mA CANopen ${ }^{\circledR}:<1 \mathrm{~W}$	Current output $4 . . .20 \mathrm{~mA}$: signal current
Supply voltage	DC $10 \ldots 30 \mathrm{~V}$ for current output DC $14 \ldots 30 \mathrm{~V}$ for voltage output DC $12 \ldots 30 \mathrm{~V}$ for CANopen ${ }^{\circledR}$	DC 10... 30 V for current output
Burden	$\leq(\mathrm{UB}-10 \mathrm{~V}) / 0.024 \mathrm{~A}$ for current output $>10 \mathrm{k} \Omega$ for voltage output	$\leq(\text { UB-10 V)/0.020 A (channel 1) }$ for current output $\leq($ UB-7 V)/0.020 A (channel 2) for current output
Response time	$\leq 2 \mathrm{~ms}\left(\right.$ within $\left.\left.10 \ldots 90 \% \mathrm{~F}_{\text {nom }}\right){ }^{3}\right)$	
Protection (acc. to EN/IEC 60529)	IP67	
Electrical protection	Reverse voltage, overvoltage and short-circuit protection	
Vibration resistance (acc. to DIN EN 60068-2-6)	$20 \mathrm{~g}, 100 \mathrm{~h}, 50 \ldots 150 \mathrm{~Hz}$	
Noise emission	DIN EN 55011	
Noise immunity	In accordance with DIN EN 61326-1/DIN EN 61326-2-3 (optional EMC-strengthened versions)	
Optional	Certificates, strength verifications, 3D-CAD files (STEP, IGES) on request	

[^0]| Model | $\begin{aligned} & \text { F23C1 } \\ & \text { ATEX/IECEx EX ib 1) } \end{aligned}$ | F2301 signal jump |
| :---: | :---: | :---: |
| Rated force $\mathrm{F}_{\text {nom }} \mathrm{kN}$ | 1, 2, 3, 5, 10, 20, 30, 50, 100 | |
| Relative linearity error $\mathrm{d}_{\text {lin }}{ }^{2}$) | ± 0.5 \% $\mathrm{F}_{\text {nom }}$ | |
| Relative reversibility error v | $<0.1 \% \mathrm{~F}_{\text {nom }}$ | |
| Relative creep, 30 min . at $\mathrm{F}_{\text {nom }}$ | $0.1 \% \mathrm{~F}_{\text {nom }}$ | |
| ```Temperature effect on - characteristic value \(\mathrm{TK}_{\mathrm{c}}\) - zero signal \(\mathrm{TK}_{0}\)``` | $\begin{aligned} & 0.4 \% F_{\text {nom }} / 10 \mathrm{~K} \\ & 0.4 \% \mathrm{~F}_{\text {nom }} / 10 \mathrm{~K} \end{aligned}$ | |
| Force limit F_{L} | $150 \% \mathrm{~F}_{\text {nom }}$ | |
| Breaking force F_{B} | $>300 \% \mathrm{~F}_{\text {nom }}$ | |
| Permissible oscillation stress $F_{r b}$ | $\pm 50 \% \mathrm{~F}_{\text {nom }}$ (in accordance with DIN 50100) | |
| $\begin{aligned} & \text { Rated displacement (typ.) } \mathbf{s}_{\text {nom }} \\ & <10 \mathrm{kN} \\ & <100 \mathrm{kN} \end{aligned}$ | $\begin{aligned} & <0.02 \mathrm{~mm} \\ & <0.2 \mathrm{~mm} \end{aligned}$ | |
| Material of measuring device | Stainless steel corrosion-resistant, ultrasonically | ested 3.1 material (optional 3.2) |
| Rated temperature $\mathrm{B}_{\mathrm{T} \text {, nom }}$ | $-20 \ldots+80^{\circ} \mathrm{C}$ | |
| Operating temperature $\mathrm{B}_{\mathrm{T}, \mathrm{G}}$ | Ex II 2G Ex ib IIC T4 Gb $-25^{\circ} \mathrm{C}<\mathrm{T}_{\text {amb }}<+85^{\circ} \mathrm{C}$ Ex\\|2G ExiblICT3 Gb $-25^{\circ} \mathrm{C}<\mathrm{T}_{\text {amb }}<+100^{\circ} \mathrm{C}$ Ex I M 2 Exib I Mb $-25^{\circ} \mathrm{C}<\mathrm{T}_{\text {amb }}<+85^{\circ} \mathrm{C}$ Ex II 2G Ex ib IIC T4 Gb $-40^{\circ} \mathrm{C}<\mathrm{T}_{\text {amb }}<+85^{\circ} \mathrm{C}$ ExIM2 Exib IMb (for cable connection only) | $-30 \ldots+80^{\circ} \mathrm{C}$ |
| Storage temperature $\mathrm{B}_{\mathrm{T}, \mathrm{S}}$ | $-40 \ldots+85^{\circ} \mathrm{C}$ | |
| Electrical connection | Circular connector M 12x1, 4-pin | |
| Output signal (rated output) $\mathrm{C}_{\text {nom }}$ | $4 \ldots 20 \mathrm{~mA}$, 2-wire | 4 ... $16 \mathrm{~mA}, 2$-wire, DC $2 \ldots 8 \mathrm{~V}, 3$-wire ${ }^{3}$) |
| Current consumption | Current output 4 ... 20 mA 2-wire: signal current | Current output 4 ... 20 mA
 2-wire: signal current,
 Current output 4 ... 20 mA
 3-wire: < 8 mA ,
 Voltage output: < 8 mA |
| Supply voltage | DC $10 \ldots 30 \mathrm{~V}$ for current output | DC $10 \ldots 30 \mathrm{~V}$ for current output DC $14 \ldots 30 \mathrm{~V}$ for voltage output |
| Burden | < (UB-10 V)/0,024 A for current output
 $>10 \mathrm{k} \Omega$ for voltage output | |
| Response time | $\leq 2 \mathrm{~ms}\left(\text { within } 10 \ldots 90 \% \mathrm{~F}_{\text {nom }}\right)^{4}$) | |
| Protection (acc. to EN/IEC 60529) | IP67 | |
| Electrical protection | Reverse voltage, overvoltage and short-circuit proter | tection |
| Vibration resistance | $20 \mathrm{~g}, 100 \mathrm{~h}, 50 \ldots 150 \mathrm{~Hz}$ acc. to DIN EN 60068-2-6 | |
| Noise emission | DIN EN 55011 | |
| Noise immunity | In accordance with DIN EN 61326-1/DIN EN 613 | 6-2-3 (optional EMC-strengthened versions) |
| Optional | Certificates, strength verifications, 3D-CAD files (| STEP, IGES) on request |
| Certificates (optional) | ATEX: acc. to EN 60079-0:2012 and EN 60079-1 IECEx: acc. to IEC 60079-0:2011 (Ed.6) and IEC 6 UL: acc. to UL 61010-1 and CSA C22.2 NO. 610 | $\begin{aligned} & 1: 2012 \text { (Ex ib) } \\ & 0079-11: 2011 \text { (Ed. 6) (Ex ib) } \\ & 0-1 \end{aligned}$ |

[^1]
Dimensions

F2301 Versions up to 30 kN

Dimensions in mm.

Rated force in kN	A	B	D	E	F	G	H	J	K1	K2	L	M	$\begin{aligned} & \mathrm{N} \\ & -0.1 \end{aligned}$	$\begin{aligned} & \text { Ball } \\ & \text { R } \end{aligned}$	$\begin{aligned} & \text { MA } \\ & \text { (Nm) } \end{aligned}$	Rated displacement
1, 2, 3	25.3	22	24	23	4.3	1.5	6	59.7	43	63	70	M12	9.5	60	60	< 0.02
5	25.3	22	24	23	4.3	1.5	6	59.7	43	63	70	M12	9.5	60	60	< 0.02
10	25.3	22	31	23	4.3	1.5	6	59.7	43	63	77	M12	9.5	80	60	< 0.02
20	25.3	26	33	34	3.8	2	10	59.7	43	63	101	M20 $\times 1.5$	17	100	300	< 0.2
30	27.6	27.5	40	34	3.8	2	10	61.5	44	64	108	M20 $\times 1.5$	17	120	300	<0.2

F2301 Versions from 50 kN

Rated force in $\mathbf{k N}$	C	D	E	F	G	H	K1	K2	L	M	N -0.1	Ball R	MA (Nm)	Rated displacement
$\mathbf{5 0}$	35	50	40	5	2	12	43	62	130	M24 $\times 2$	20	150	500	<0.2
$\mathbf{1 0 0}$	54	54	68	10	3	19.5	44	64	190	M39 $\times 3$	34	200	2,500	<0.2

Dimensions

Rated force in kN	A	B	D	E	F	G	H	J	K1	K2	L	M	$\begin{aligned} & \mathrm{N} \\ & -0.1 \end{aligned}$	Ball R	MA (Nm)	Rated displacement
1, 2, 3	25.3	22	24	23	4.3	1.5	6	59.7	43	63	70	M12	9.5	60	60	<0.02
5	25.3	22	24	23	4.3	1.5	6	59.7	43	63	70	M12	9.5	60	60	<0.02
10	25.3	22	31	23	4.3	1.5	6	59.7	43	63	77	M12	9.5	80	60	<0.02
20	25.3	26	33	34	3.8	2	10	59.7	43	63	101	M20 x 1.5	17	100	300	<0.2
30	27.6	27.5	40	34	3.8	2	10	61.5	44	64	108	M20 $\times 1.5$	17	120	300	<0.2

F2301 (signal jump) versions from 50 kN

$\underset{\text { ® }}{\stackrel{\unrhd}{\bar{\sim}}}$

Rated force in $\mathbf{k N}$	ØA	D	E	F	G	H	J	K1	K2	L	M	N -0,1	Ball \mathbf{R}	MA $\mathbf{(N m)}$	Rated displacement
$\mathbf{5 0}$	35	50	40	5	2	12	91.5	73	90.2	130	M24 x2	20	150	500	<0.2
$\mathbf{1 0 0}$	54	54	68	10	3.7	19.5	91.5	71	91	197	M39 $\times 3$	34	200	2,500	<0.2

Dimensions

F23S1 Versions from 3 kN
F23S1 Versions from 3 kN

Rated force in $\mathbf{k N}$	\mathbf{B}	C	E	F	G	H	I	J	L	M	ØN -0.1	Ball R
$\mathbf{3 - 7}$	22	25.3	23	12.7	1.5	6	18.7	152.5	75	M12	9,5	60
$\mathbf{6 - 1 3}$	25.3	25.3	26	13.5	1.5	8	21.5	152.5	85	M16 $\times 1.5$	13	80
$\mathbf{1 2 - 2 6}$	27.5	27.6	34	20.2	2	10	30.2	152.5	108	M20 $\times 1.5$	17	120
$\mathbf{1 8 - 4 0}$	33	27.6	40	23	2	12	35	152.5	126	M24 $\times 2$	20	120
$\mathbf{3 1 - 7 0}$	40	40	48	25	2	15	40	157.4	154	M30 $\times 2$	26	150
$\mathbf{6 7 - 1 5 1}$	60	60	78	47.8	3	19.7	67.5	177.4	223	M42 $\times 2$	38	250

Dimensions

Swivel heads in accordance with DIN ISO 12240-4
$\varnothing-D 1=12 \ldots 25 \mathrm{dim}$. column K
$\varnothing-D 2=40 \ldots 80 \mathrm{dim}$. column E

Rated force in kN	\mathbf{H}	Minimum screw-in depth T
$\mathbf{1 , 2 , 3 , 5}$	148 ± 3	9.5
$\mathbf{1 0}$	155 ± 3	9.5
$\mathbf{2 0}$	219 ± 4	16
$\mathbf{3 0}$	226 ± 4	16
$\mathbf{5 0}$	276 ± 4	19.5
$\mathbf{1 0 0}$	405 ± 7	31

Rated force in kN	Weight in kg	A	B	$\varnothing D_{1}$	$\varnothing D_{2}$	F	G	GL	ØK	L	M	SW
1, 2, 3, 5, 10	0.115	32	16	12 H 7	15.4	50	M12	22	22	55	12	19
20, 30	0.415	50	25	20 H 7	24.3	77	M 20×1.5	33	34	102	18	32
50	0.750	60	31	25H7	29.6	94	M 24×2	42	42	124	22	36
100	2	92	28	$40-0.012$	45	142	M 39×3	65	65	188	23	55

Pin assignment analogue output

4 ... 20 mA output, 2-wire
Circular connector M12 x 1, 4-pin

0 ... 10 V output, 4 ... 20 mA output, 3-wire Circular connector M12 x 1, 4-pin

Cable outlet		
Cable colour	2-wire	3-wire
Brown	UB+/S+	UB+
White	-	-
Blue	OV/S-	oV/S-
Black	-	S+

Only when using the standard cable, e.g. EZE53X011016

Cable outlet	
Cable colour	2-wire
Brown	UB+/S+
White	-
Blue	OV/S-
Black	-

Only when using the standard cable, e.g. EZE53X011016

Pin assignment signal jump version in accordance with EN 62061:2005

Circular connector M12 x 1, 4-pin			
	$4 \ldots .20 \mathrm{~mA}$ 2-wire	4-..20 mA 3-wire	$0 \ldots 10 \mathrm{~V}$ 3-wire
Supply UB+	1	1	1
Supply OV/UB-	3	3	3
Relay UR+	2	2	2
Relay UR-	4	3	3
Signal S+	1	4	4
Signal S-	3	3	3
Screen $\boldsymbol{\theta}$	Case	Case	Case

Cable outlet		
Cable colour	2-wire	3-wire
Brown	UB+/S+	UB+
White	UR+	UR+
Blue	OV/S-	OV/S-/UR-
Black	UR-	S+

[^2]
Pin assignment analogue output, redundant, opposing

Circular connector M12 x 1, 4-pin		
	$\begin{aligned} & 4 \ldots 20 \mathrm{~mA} / 20 \ldots 4 \mathrm{~mA} \\ & \text { (redundant) } \end{aligned}$	
	Connector 1	Connector 2
Supply UB+	1	1
Supply OV/UB-	3	3
Signal channel1	4	-
Signal channel 2	-	4
Screen ${ }^{\text {e }}$	Case	Case

2-connector variant, for example, in combination with ELMS1 overload protection (F23S1). Version in accordance with requirements for functional safety per 2006/42/EC Machinery Directive.

Pin assignment CANopen ${ }^{\circledR}$

Circular connector M12 $\mathbf{x} \mathbf{1 ,}$	5-pin
Screen \oplus -	1
Supply UB+ (CAN V+)	2
Supply UB- (CAN GND)	3
Bus-Signal CAN-High	4
Bus-Signal CAN-Low	5

Connect the cable shield to the force transducer housing. In the case of accessory cables, the cable shield must be connected with the knurled nut and thus connected to the housing of the force transducer. When extending, only shielded and low capacitance cables should be used. The permitted maximum and minimum lengths of the cable are specified in ISO 11898-2. A high-quality connection of the shielding must also be ensured.

Short description of signal jump electronics

Amplifier electronics $4 \ldots 20 \mathrm{~mA}$ or 0 ... 10 V for signal jump applications with 2-channel PC control

Compliance with functional safety

An external safety controller independently of the force transducer must monitor the safe functioning of the force transducer. The function test with a signal jump of $4 \mathrm{~mA} / 2 \mathrm{~V}$ is generated at a 24 -hour interval. The safety controller activates relay A and thus defines the output signal of the force transducer.

If the expected change in the output signal occurs, it can be assumed that the entire signal path of the Wheatstone bridge via the amplifier to the output functions correctly.

These force transducers are working with four variable resistors (R1 ... R4) connected to a Wheatstone Bridge. Caused by deformation of the body the respective opposite resistors are lengthened or compressed in the same way. This results in an unbalanced bridge and a diagonal voltage UO.

This well proven design has been amended by an additional resistor R7 in order to monitor the condition of the amplifier unit and signal path. This resistor is connected as a shunt to resistor R5 by a relay contact (a) as soon as an excitation voltage Ur appears at relay A. The connection of resistor R7 will always result in a defined unbalancing of the zero point (diagonal voltage) of the Wheatstone Bridge.

If it does not occur, an error in this signal path can be concluded. Furthermore, the measuring signal is to be checked by the safety controller for the Min- (A) and Max- (B) signal values in order to detect a possibly arising line break or short circuit.

The standard adjustment of force transducers with current output 4 ... 20 mA for overload control is e.g.:

Signal of signal jump electronics

With a fixed signal level of, for example, 4 mA , the testing cycle can be triggered in every operating status upon activation of the check relais. The measurement's upper limit
of 20 mA will not be reached. This enables a check of the signal level.

[^3]WIKA Alexander Wiegand SE \& Co. KG
Alexander-Wiegand-Straße 30
63911 Klingenberg/Germany
Tel. \quad +49 9372 132-0
Fax +49 9372 132-406
info@wika.de
www.wika.de

[^0]: 1) Relative linearity error acc. to VDI/VDE/DKD 2638 chap. 3.2.6.
 2) Protocol acc. to CiA DS-301 V.402. Device profile DS-404 V. 1.2
 3) Other response times are available on request.

 CANopen ${ }^{\circledR}$ and CiA^{\circledR} are registered community trade marks of CAN in Automation e.V.

[^1]: 1) The force transducer with ignition protection type "ib" must only be supplied using galvanically-isolated power supplies. Suitable supply isolators are also optionally available e.g. EZE08X030003
 2) Relative linearity error acc. to VDI/VDE/DKD 2638 chap. 3.2.6.
 3) Other signal jumps are available on request.
 4) Other response times are available on request.

 CANopen ${ }^{\circledR}$ and CiA^{\circledR} are registered community trade marks of CAN in Automation e.V.

[^2]: Only when using the standard cable, e.g. EZE53X011016

[^3]: © 2016 WIKA Alexander Wiegand SE \& Co. KG, all rights reserved.
 The specifications given in this document represent the state of engineering at the time of publishing.
 We reserve the right to make modifications to the specifications and materials.

