
# OIL IN SAE 1 1/2\* 3000 PSI OIL OUT SAE 1 1/4\* 3000 PSI



# FLUID PURIFIER SYSTEMS, mobile Series IFPM 32

Sheet No. 4038 C

### 1. Type index:

1.1. Fluid Purifier System: (ordering example)

```
IFPM. 32. 6VG. 10. B. V. -. P22. D27. VP01. VS5. A
```

- 1 series:
  - IFPM = Fluid Purifier System, mobile
- 2 nominal size: 32
- 3 | filter-material and filter-fineness:

10 VG = 10  $\mu$ m<sub>(c)</sub>, 6 VG = 7  $\mu$ m<sub>(c)</sub>, 3 VG = 5  $\mu$ m<sub>(c)</sub>, 1 VG = 4  $\mu$ m<sub>(c)</sub> Interpor fleece (glass fiber)

- 4 resistance of pressure difference for filter element:
  - \_\_\_\_ 10 = Δp 10 bar
- 5 | filter element design:
- B = both sides open
- 6 sealing material:

V = Viton (FPM)

7 filter element specification:

- = standard VA = stainless steel

IS06 = see sheet-no. 31601

8 pump unit:

P22 = pump unit 22, NG 60.40

9 motor:

D27 = rotary current motor 50 Hz: 1.0 HP, 3-phase, 220...240/380...415V 60 Hz: 1.2 HP, 3-phase, 255...277/440...480V

D89 = rotary current motor 60 Hz: 1.0 HP, 3-phase, 332/575V

10 vacuum pump:

VP01 = vacuum pump 01, 50 Hz: 0.7 HP, 3-phase, 200...240/346...415V 60 Hz: 0.7 HP, 3-phase, 200...277/346...480V

VP09 = vacuum pump 09, 60 Hz: 0.7 HP, 3-phase, 332/575V

11 | clogging sensor:

VS5 = VS5.1,5.V.-.NO.-.B.GS5, electronical, at p<sub>1</sub> and p<sub>2</sub>, 22 PSI, see sheet-no. 1641

12 supply voltage:

A = 380V-415V; 50/60 Hz; 3Ph + N + PE (Delivery with 16A CEE plug for three-phase current)

= 440V-480V; 60 Hz; 3Ph + PE = 220V-240V; 50/60 Hz; 3Ph + PE

= 220V-240V; 50/60 Hz; 3Ph + PE = 380V-415V; 50/60 Hz; 3Ph + PE

F = 332/575V, 60 Hz, 3Ph + PE

c = other voltage on request

**1.2. Filter element:** (ordering example)

**01NR. 630. 6VG. 10. B. V. -**1 2 3 4 5 6 7

1 series:

01NR. = standard-return-line filter element according to DIN 24550, T4

2 nominal size: 630

3 - 7 see type index- Fluid Purifier Systems

Changes of measures and design are subject to alteration!



Friedenstrasse 41, 68804 Altlussheim, Germany

phone +49 (0)6205 - 2094-0 fax +49 - 06205 - 2094-40 e-mail

filtration@eaton.com www.eaton.com/filtration

## 2. Description:

### 2.1. Effects of Water Contamination:

Water is one of the most common contaminants and the second most destructive besides particulate contamination. Some of the most damaging problems water contamination can cause are:

- Fluid breakdown
- Additive depletion
- Reduction of the lubrication properties of the fluid
- Oil oxidation
- Internal corrosion
- · Abrasive wear in system components
- Reduced dielectric strength

### 2.2. Principle of Operation:

The contaminated fluid is drawn into the Fluid Purifier System by a vacuum.

The fluid is passing a heater which is raising the temperature in order to increase the dewatering speed.

The fluid then enters through a solenoid valve into the vacuum chamber. In the vacuum chamber a big free surface is created with filling material. Here the water is absorbed by the air. Through an oil mist separator the humid air is released to the atmosphere with a vacuum pump. With a gear pump the vacuum chamber is drained and the fluid is pumped back to the system through a high efficiency particulate removal filter. The standard installed water sensor allows a permanent control of the water saturation of the fluid.

### 3. Technical data:

Inlet connection: 1 1/2" SAE-flange 3000 PSI 1 ¼" SAE-flange 3000 PSI Outlet connection:

7.5 GPM (50 Hz) / 9.0 GPM (60 Hz) Circulation flow rate:\*

Operating vacuum: 8.7 PSI

Supply voltage A + E: 3000 Watt/400V Heater power:

Supply voltage B: 3000 Watt/460V Supply voltage C: 3000 Watt/230V Supply voltage F: 3000 Watt/575V

NF 631

Filter type: Viton (FPM) Seal material: 56...3200 SUS Viscosity: Dewatering rate:\*\* 5.8 gal./Day IP54

Protection class: +32°F to +104°F Ambient temperature: +50°F to +176°F Fluid temperature: Weight: approx. 680 lbs.

- At a viscosity of the fluid of 146 SUS
- Dewatering rate of free water, at a hydraulic oil of the viscosity class ISO VG32 and a fluid temperature of 140°F

US 4038 C

### 4. Test methods: Filter elements are tested according to the following ISO standards:

| ISO 2941  | Verification of collapse/burst resistance               |
|-----------|---------------------------------------------------------|
| ISO 2942  | Verification of fabrication integrity                   |
| ISO 2943  | Verification of material compatibility with fluids      |
| ISO 3723  | Method for end load test                                |
| ISO 3724  | Verification of flow fatigue characteristics            |
| ISO 3968  | Evaluation of pressure drop versus flow characteristics |
| ISO 16889 | Multi-pass method for evaluating filtration performance |

Note: Spare parts see maintenance manual.