Operating Instruction

for
Universal Indicating Unit

Frequency input: 0.01 Hz bis 99.99 kHz
Connection for NAMUR-, NPN-, PNP- and TTL-sensors

Model: ADI-1F... 96x96 mm

Identification

Options - break-down ordering code:

Contents

1. Brief description 5
2. Assembly 6
3. Electrical connection 8
4. Description of function and operation 10
5. Setting up the device 12
5.1. Switching on 12
5.2. Standard parameterisation (flat operation level) 12Value assignment for the triggering of the signal input of the digital display and bargraph display
5.3. Programming interlock „RUN"
Activiation/Deactivation of the programming interlock or change into professional operation level respectively back into flat operation level
5.4. Extended parameterisation (professional operation level) 18
5.4.1. Signal input parameters „ $1 \mathrm{NP}^{\prime \prime}$ 18
Value assignment for the triggering of the signal input incl. linearisation of the digital display and the bargraph display
5.4.2. General device parameters „FCT"
Superior device functions like HOLD, TARA, min/max permanent, setpoint value function / nominal value function, averaging, brightness control, as well as the control of the digital input and keyboard layout
5.4.3. Bargraph functions „bar"
Assignment of the bargraph to superior functions like min/max, totaliser, HOLD or sliding averaging
5.4.4. Safety parameters „Cod"
Assignment of user and master code for locking respectively for access to defined parameters like e.g. analog output and alarms, etc.
5.4.5. Analog output parameters „Out" 30
Analog output functions
5.4.6. Relay functions „rel" 32
Parameters for the definition of the setpoints
5.4.7. Alarm parameters „AL1..AL.4" 34
Actuator and dependencies of the alarms
5.4.8. Totaliser (Volume metering) „tot" 36
Parameters for the calculation of the sum function
6. Reset to factory settings 37
Reset parameters to delivery state
7. Alarms / Relay 38
Functional principle of the switching outputs
8. Programmer examples 39
Examples of use e.g. the calculation of the input frequency or the adjustment of unknown rotational speed
9. Technical data 41
10. Safety advices 43
11. Error elimination 44
12. Disposal 45
13. EU Declaration of Conformance 46
14. UKCA Declaration of Conformity 47

Abstract

The instruction manuals on our website www.kobold.com are always for currently manufactured version of our products. Due to technical changes, the instruction manuals available online may not always correspond to the product version you have purchased. If you need an instruction manual that corresponds to the purchased product version, you can request it from us free of charge by email (info.de@kobold.com) in PDF format, specifying the relevant invoice number and serial number. If you wish, the operating instructions can also be sent to you by post in paper form against an applicable postage fee.

Manufactured and sold by:

Kobold Messring GmbH
Nordring 22-24
D-65719 Hofheim
Tel.: +49(0)6192-2990
Fax: +49(0)6192-23398
E-Mail: info.de@kobold.com
Internet: www.kobold.com

1. Brief description

The panel meter instrument ADI-1F is a 5 -digit digital display with a 55 points bargraph display and two galvanic insulated setpoints; designed for pulse signals respectively 2 - and 3 -wire sensors. The configuration happens via four keys at the front. The integrated programming interlock prevents unrequested changes of parameters and can be unlocked again with an individual code. Optional the following functions are available: a supply for the sensor, a digital input for triggering of Hold (Tara), two analog outputs and interfaces for further evaluating in the unit. The electrical connection is done via plug-in terminals on the back side.
Selectable functions like e.g. the recall of the min/max-value, an averaging of the measuring signals, a nominal presetting or setpoint presetting, a direct threshold value regulation during operation mode and further measuring setpoints for linearisation, complete the modern device concept.

Technical features:

- red display of -19999... 99999 digits
- red 55 points bargraph
- adjustable bar or dot operation or operation with permanent display of center point
- min/max memory
- display adjustment via frequency presetting or directly on the sensor signal
- 30 adjustable setpoints
- display flashing at threshold value exceedance/undercut
- Schmitt-Trigger-input
- zero-key for triggering of HOLD, TARA
- permanent min/max-value recording
- digital frequency filter for contact bounce suppression and interference suppresion
- frequency filter with varying pulse control factor
- volume metering (totaliser) for frequencies up to 1 kHz (accurate to a pulse)
- mathematical function like reciprocal value, square root, rounding
- sliding averaging with an optional dynamic display filter
- setpoint generator
- brightness control
- programming interlock via access code
- protection class IP65 at the front side
- plug-in screw terminal
- sensor supply
- galvanic insulated digital input
- 2 relay output
- optional analog output

2. Assembly

Please read the Safety advice on page 37 before installation and keep this user manual for future reference.

1. After removing the fixing elements, insert the device.
2. Check the seal to make sure it fits securely.
3. Click the fixing elements back into place and tighten the clamping screws by hand. Then use a screwdriver to tighten them another half a turn.

CAUTION! The torque should not exceed 0.1 Nm !

Please state you favorite dimension symbol in your order, they can not be exchanged afterwards!

2.2 Mounting field housing

For the assembling of ADI-1 field housing please use the M4 screws. Optionally the housing can be delivered with wall mounting or pipe mounting. For the electrically connection please pull the housing lead back.

3. Electrical connection

Model ADI-1V000200 with supply of 100-240 VAC
Model ADI-1V300200 with supply of 10-40 VDC

Attention!

For devices with sensor supply, terminal clamps 4 and 18, aswell as 3 and 19 are connected galvanically in the device.

ADI-1F with a frequency input / pulse input

3-wire PNP

3-wire NPN

Namur

3-wire PNP

3-wire NPN

4. Description of function and operation

Operation

The operation is divided into three different levels.

Menu level (delivery status)

This level is for the standard settings of the device. Only menu items which are sufficent to set the device into operation are displayed. To get into the professional level, run through the menu level and parameterise "prof" under menu item ruN.

Menu group level (complete function volume)

Suited for complex applications as e.g. linkage of alarms, setpoint treatment, totaliser function etc. In this level function groups which allow an extended parameterisation of the standard settings are availabe. To leave the menu group level, run through this level and parameterise „uloc, under menu item run.

Parameterisation level:

Parameter deposited in the menu item can here be parameterised. Functions, that can be changed or adjusted, are always signalised by a flashing of the display. Settings that are made in the parameterisation level are confirmed with [P] and thus safed. By pressing the „zero-key" it leads to a break-off of the value input and to a change into the menu level. All adjustments are safed automatically by the device and changes into operating mode, if no further key operation is done within the next 10 seconds.

Level	Key	Description
Menu level	P	Change to parameterisation level and deposited values.
	$\triangle \nabla$	Keys for up and down navigation in the menu level.
	0	Change into operation mode.
Parameterisation level	P	To confirm the changes made at the parameterization level.
	$\triangle \nabla$	Adjustment of the value / the setting.
	0	Change into menu level or break-off in value input.
Menu group level	P	Change to menu level.
	$\triangle \square$	Keys for up and down navigation in the menu group level.
	0	Change into operation mode or back into menu level.

Funktion chart:

Underline:
$\begin{array}{llll}\square & \text { Takeover } & \Delta & \text { Value selection (+) } \\ \square & \text { Stop } & \nabla & \text { Value selection (-) }\end{array}$

5. Setting up the device

5.1. Switching-on

Once the installation is complete, you can start the device by applying the voltage supply. Before, check once again that all electrical connections are correct.

Starting sequence

For 1 second during the switching-on process, the segment test (88888) is displayed, followed by an indication of the software type and, after that, also for 1 second, the software version. After the starting sequence, the device switches to operation/display mode.

5.2. Standard parameterisation: (flat operation level)

To parameterize the display, press the [P] key in operating mode for 1 second. The display then changes to the menu level with the first menu item TYPE.

Menü－Ebene	Parameter－Ebene
	Selection of analog output，Out．rA： Default：4－20 Three output signals are available： $0-10 \mathrm{VDC}, 0-20 \mathrm{~mA}$ and $4-20 \mathrm{~mA}$ ，with this function，the demanded signal is selected．
	Setting up the final value of the analog output，Out．En： Default： 10000 The final value is adjusted from the smallest digit to the highest digit with［ $\mathbf{\Delta}$ ］［ $\mathbf{\nabla}$ ］and digit by digit confirmed with［P］．A minus sign can only be parameterised on the highest digit．After the last digit，the device changes back into menu level．
	Setting up the initial value of the analog output，Out．OF： Default：oocoo The final value is adjusted from the smallest digit to the highest digit with［ $\mathbf{\Delta}$ ］［ \mathbf{V} ］and digit by digit confirmed with［P］．A minus sign can only be parametrised on the highest digit．After the last digit，the device changes back into menu level．
$\left.\begin{array}{\|l\|l\|l\|} \hline L & i & - \\ \hline \boldsymbol{\nabla} & \Delta \end{array} \right\rvert\,$	Threshold values／limit values， ll_{1}－： Default： 2000 For both limit values，two different values can be parameterized．With this，the parameters for each limit value are called up one after another．
$\begin{aligned} & \mid H \exists-i \\ & \|\nabla \Delta\| \end{aligned}$	Hysteresis for limit values， HY －ı： Default：ooooo The delayed reaction of the alarm is the difference to the threshold value，which is defined by the hysteresis．

Menu level	Parameterisation level
	Function if display falls below / exceeds limit value, Fu -: Default: high H ILH Laus \square The limit value undercut can be selected with loun (LOW = lower limit value) and limit value exceedance can be selected with high (HIGH = upper limit value). If e.g. limit value 1 is on a switching threshold of 100 and occupied with function „high", the alarm will be activated by reaching the threshold. If the limit value is allocated to „Low", an alarm will be activated by undercut of the threshold. See page 29.
$\begin{aligned} & \hline L \\ & \hline L-\Xi \\ & \mid \nabla \Delta \end{aligned}$	Threshold values / limit values, Ll -2: Default: 3000 For both limit values, two different values can be parameterized. With this, the parameters for each limit value are called up one after another.
$\begin{aligned} & \mathrm{HU}-\Xi \\ & \|\nabla \Delta\| \end{aligned}$	Default: 00000 The delayed reaction of the alarm is the difference to the threshold value, which is defined by the hysteresis.
	Function if display falls below / exceeds limit value, Fu-2: Default:high The limit value undercut can be selected with Loun (LOW = lower limit value) and limit value exceedance can be selected with high (HIGH = upper limit value). If e.g. limit value 1 is on a switching threshold of 100 and occupied with function „high", the alarm will be activated by reaching the threshold. If the limit value is allocated to "Low", an alarm will be activated by undercut of the threshold.
$$	User code (4-digit number-combination, free available), u.CodE: Default: oooo If this code is set (>0000), all parameters are locked, if loc has been selected before under menu item run. By pushing [P] during operation mode for approx. 3 seconds, Code appears in the display. To get to the unlocked reduced parameter, the user needs to enter the preset U.code. This code has to be entered before each parametrisation, until the A.Code (Master code) unlocks all parameters again.

Menu level	Parameterisation level
$\begin{aligned} & \text { RIGaE } \\ & \|\nabla \Delta\| \mid \end{aligned}$	Master code (4-digit number-combination free available), A.CodE: Default: 1234 With this code, all parameters can be unlocked, if LOC has been activated before under menu item run. By pushing [P] during operation mode for approx. 3 seconds, Code appears in the display. The user can now reach all parameters by entering A.codE. Leaving the parametrisation, under menu item run, the user can unlock them permanently by choosing uloc or ProF. So, there is no need for anew code entering, even by pushing [P] during operation mode again.
5.3. Programming interlock „run"	
	Activation / deactivation of the programming lock or completion of the standard parameterisation with change into menu group level (complete function range), run: Default: uloc With the navigation keys [\mathbf{A}] [\mathbf{V}], you can choose between the deactivated key lock uloc (works setting) and the activated key lock loc, or the menu group level ProF. Confirm the selection with [P]. After this, the display confirms the settings with "-----", and automatically switches to operating mode. If loc was selected, the keyboard is locked. To get back into the menu level, press [P] for 3 seconds in operating mode. Now enter the CODE (works setting 1234) that appears using [$\mathbf{\Delta}$] [$\mathbf{V}]$ plus $[P]$ to unlock the keyboard. FAll appears if the input is wrong. To parameterise further functions Prof needs to be set. The device confirms this setting with „--- - , , and changes automatically in operation mode. By pressing [P] for approx. 3 seconds in operation mode, the first menu group lnP is shown in the display and thus confirms the change into the extended parameterisation. It stays activated as long as uloc is entered in menu group RUN, thus the display is set back in standard parameterisation again.

5.4. Extended parameterisation (Professional operation level)

5.4.1. Signal input parameters

Menu level	Parameterisation level
	Selection of the input signal, tYPE: Default:fregu $5 E n 5 F \frac{\Delta}{\nabla} \text { FrEqU } \triangle \mathrm{P}$ If the scaling of the device is done via SEnS.F (Sensor calibration), the frequency range needs to be preset under rAnGE and is adjusted by application of the final value /initial value. If FrEqu (Factory calibration) is preferred, the final value needs to be entered under End and the final frequency needs to be entered under EndA. Under OFFS the initial value needs to be entered and under OFFSA the initial frequency. There is no application of the measuring signal. Confirm the selection with [P] and the display switches back to menu level.
$\begin{aligned} & \square \boldsymbol{r a I E} \\ & \nabla \nabla \Delta \mid \end{aligned}$	Setting the end value of the measuring range, END: Default: 100е3 Choose between six different frequency ranges. Confirm the selection with $[\mathrm{P}]$ and the display switches back to menu level.
$\begin{aligned} & \square E \pi \square \\ & \nabla \Delta \Delta \mid \end{aligned}$	Setting the final value of the measuring range, END: Default: 10000 Set the final value from the smallest to the highest digit with [$\mathbf{\Delta}$] [\mathbf{V}] and confirm each digit with $[P]$. A minus sign can only be parametrized on the highest value digit. After the last digit, the display switches back to the menu level. If Sens was selected as input option, you can only select between noca and cal. With noca, only the previously set display value is taken over, and with cal, the device takes over both the display value and the analogue input value.

Menu level		Parameterisation level
$\begin{aligned} & \square F F 5 \\ & \uparrow \nabla \Delta \mid \end{aligned}$		Setting the start／offset value of the measuring range，off： Default：o Enter the start／offset value from the smallest to the highest digit［ $\mathbf{\Delta}$ ］［ \mathbf{V} ］and confirm each digit with［P］．After the last digit the display switches back to the menu level．If Sens．F was selected as the input option，you can only select between noca and cal．With noca，only the previously set display value is taken over，and with cal，the device takes over both the display value and the analogue input value．
		ting the decimal point，dot： ault：o 0.000 decimal point on the display can be moved with［ $\mathbf{\Delta}$ ］［ $\mathbf{V}]$ and confirmed with［P］．The play then switches back to the menu level again．
$\begin{aligned} & \square \\ & \hline \boxed{\square} \\ & \mid \nabla \square \end{aligned}$		ting up the display time，SEC： ault： 1.0 민 \square 04.9 then \square $\square!$ \square 10.0 \square display time is set with［ $\mathbf{\Delta}$ ］［ \mathbf{V} ］．The display moves up in increments of 0.1 sec up to 1 sec in increments of 1.0 sec up to 10.0 sec ．Confirm the selection by pressing the $[\mathrm{P}]$ button． display then switches back to the menu level again．
$\begin{aligned} & \text { EndR } \\ & \text { A } \boldsymbol{\nabla} \mid \end{aligned}$		scaling the measuring input values，EndA： fault： 10000 th this function，you can rescale the input value of e．g． 8.000 Hz （works setting）without plying a measuring signal．If sensor calibration has been selected，these parameters are not ailable．
$\begin{aligned} & \square F F 5 R \\ & \nabla \Delta \square \end{aligned}$		Rescaling the measuring input values，OFFA： Default：o With this function，you can rescale the input value of e．g． 100 Hz （works setting）without applying a measuring signal．If sensor calibration has been selected，these parameters are not available．

Menu level	Parameterisation level
	Setting of the impulse delay, dELAY: Default:o With the impulse delay of $0-250 \mathrm{~s}$ (max), frequencies can be collected, which are even smaller than by the predetermined measuring time of the device. If e.g. a delay of 250 seconds is set, this means that the device waits up to 250 seconds for an edge, before it assumes a 0 Hz -frequency. Thus frequencies up to 0.004 Hz can be collected.
$F: F r \square$ P	Adjustment of the optimum digital frequency filter, fi.frq: Default: NO If the optional filter is not activated by the adjustment ${ }^{\mathrm{N}}$ "", frequences are ignored by the adjusted frequency filter. Act on the assumption that the pulse-duty factor is 1:1. Accordingly the minimal pulse duration is derived from the half of the time of oscillation. Use a filter of 10 Hz or 20 Hz for contact bounce suppression.
F ir RL \square $\uparrow \nabla$	Adjustment of the pulse-duty factor at activated digital filter, firat: Default: i-i Adjustment of the desired pulse-duty factor for pulse duration and pulse interruption. Like this, a special pulse behaviour can be adjusted.
	Setting up the tare/offset value, tArA: Default:o The given value is added to the linerarized value. In this way, the characteristic line can be shifted by the selected amount.
	Number of additional setpoints, SPCt: Default: oo \square 1 \square \square 30 additional setpoints can be defined to the initial- and final value, so linear sensor values are not linearised. Only activated setpoint parameters are displayed.

Menu level	Parameterisation level
	Display values for setpoints, diS.01 ...dlS.30: Under this parameter setpoints are defined according to their value. At the sensor calibration, like at Endwert/Offset, one is asked at the end if a calibration shall be activated.
	Analog values for setpoints, lnP.o1 ... $\ln P .30$: The setpoints are always set according to the selected input signal. The desired analog values can be freely parametrised in ascending order.
$\begin{aligned} & \text { ai . ina } \\ & \|\nabla \Delta\| \end{aligned}$	Device undercut, dl.Und: Default: -ig999 With this function the device undercut (. . . .) can be defined on a definite value. Exception is input type 4-20 mA, it already shows undercut at a signal $<1 \mathrm{~mA}$, so a sensor failure is marked.
	Display overflow, dl.ouE: Default: 99999
$\begin{aligned} & \square \\ & \hline \nabla E L \\ & \nabla \Delta \end{aligned}$	Back to menu group level, rEt: With [P] the selection is confirmed and the device changes into menu group level „-1NP-".

5.4.2. General device parameters

Menu level	Parameterisation level
$\begin{aligned} & \square E E \square \\ & \|\nabla \boxed{\square}\| \end{aligned}$	Dynamic for the sliding average determination，step： Default：no GPI－a With step the sliding average determination can be adjusted dynamically．If 6 pro or 12 pro is selected，a frequency value with a variance of 6% or 12% of the current display value is taken over directly for the sliding averaging．The display appears to be more dynamic at a fast frequency change，without appearing disturbed by a slightly unsteady frequency．
IEr	Zero point slowdown，ZErO： Default：oo At the zero point slowdown，a value range around the zero point can be preset，so the display shows a zero．If e．g．a 10 is set，the display would show a zero in the value range from -10 to +10 ；below continue with -11 and beyond with +11 ．The maximum adjustable range of value is 99.
$\begin{aligned} & \text { ■ロッらL } \\ & \|\nabla \Delta\| \end{aligned}$	Definite contstant value，const： Default：o The constant value can be evaluated via the alarms or via the analog output，like the current measurand．The decimal place cannot be changed for this value and is taken over by the current measurand．Like this a setpoint generator can be realised via the analog output by this value．Furthermore it can be used for calculating the difference．At this the constant value is substracted from the current measurand and the difference is evaluated in the alerting or by the analog output．Thus regulations can be displayed quite easily．
	Minimum constant value，con．mi： Default：－i9999 The minimum constant value is adjusted from the smallest to the highest digit with the navigation keys $[\mathbf{\Delta}][\mathbf{V}]$ and confirmed digit per digit with $[\mathrm{P}]$ ．A minus sign can only be adjusted on the highest digit．After the last digit the display changes back into menu level．
$\begin{gathered} \square \square \cap . \Pi \square \\ \nabla \Delta \square \mid \end{gathered}$	Maximum constant value，con．ma： Default： 99999 The maximum constant value is adjusted from the smallest to the highest digit with the navigation keys $[\mathbf{\Delta}][\mathbf{V}]$ and confirmed digit per digit with $[\mathrm{P}]$ ．A minus sign can only be adjusted on the highest digit．After the last digit the display changes back into menu level．

| Menu level | Parameterisation level |
| :--- | :--- | :--- |
| Display, displ: | |
| Default: Actua | |

Menu level

Menu level	Parameterisation level
$\begin{aligned} & \text { LRSL.4 } \\ & \qquad \nabla \Delta \mid \end{aligned}$	Special function [O]-key, tASt.4: Default: no For the operation mode, special functions can be deposited on the [O]-Taste. This function is activated by pressing the key. With tArA the device is set temporarily on a parameterised value. The device acknowledges the correct taring with oocoo in the display. Set.tA adds a defined value on to the currently displayed value. Via totAl the current value of the totaliser can be displayed for approx. 7 seconds, after this the device switches back on the parameterised display value. If tot.rE is deposited, the totaliser can be set back by pressing of the navigation keys [$\mathbf{\Delta}$] [\mathbf{V}], the device acknowledges this with ooooo in the display. EHt.re deletes the min/max-memory. If hold has been selected, the moment can be hold constant by pressing the [O]-key, and is updated by releasing the key. Advice: Hold is activated only, if hold is selected under parameter DISPL. Actut shows the measuring value for approx. 7 seconds, after this the device switches back on the parameterised display value. The same goes for AVG, here the sliding average values will be displayed. The constant value const can be recalled via the digital input, or changed digit per digit. At AL-1..AL-4 an output can be set and therewith e.g. a setpoint adjustment can be done. If no is selected, the [O]-key is without any function in the operation mode.
	Special function digital input, diG.In: Default: no In operation mode, the above shown parameter can be laid on the optional digital input, too. Function description see tASt.4.
$\begin{aligned} & \square \mid E L \\ & \uparrow \nabla \Delta \mid \end{aligned}$	Back to menu group level, ret: With [P] the selection is confirmed and the device changes into menu group level „-fct-".

5.4.3. Bargraph functions

Menu level	Parameterisation level	
$\begin{aligned} & \square \square . \square \square \square \\ & \nabla \Delta \end{aligned}$	Bargraph, Ba.sr: Default: actua With this function the following values can be allocated to the display: the current measurand, the min/max value, the totaliser value, the process-controlled hold value, the sliding average value, the constant value or the difference between constant and current value of the bargraph. With [P] the selection is confirmed and the device changes into menu level.	
$\begin{aligned} & \square R E \square \square \\ & \nabla \square \Delta \end{aligned}$	Adjusting the final value of the bargraph, ba.ENd: Default: 10000 Set the final value from the smallest to the highest digit with [$\mathbf{\Delta}$] [\mathbf{V}] and confirm each digit with [P]. A minus sign can only be parameterized on the highest value digit. After the last digit, the display switches back to the menu level.	
$\begin{aligned} & \square R, D F F \\ & \\| \nabla \Delta \end{aligned}$	Adjusting the initial value of the bargraph, ba.off: Default: o Set the initial value from the smallest to the highest digit with [$\mathbf{\Delta}$] [\mathbf{V}] and confirm each digit with $[\mathrm{P}]$. A minus sign can only be parameterized on the highest value digit. After the last digit, the display switches back to the menu level.	
$\begin{aligned} & \square R: F \square L \\ & \\| \nabla \Delta \mid \end{aligned}$	Selection of the bargraph functions, bafct: Default: bar.fo The bargraph can be displayed with the following possibilites: bars forwards, bars backwards, bars from the middle, a dot display of the bargraph or a dot display with a permanently displayed midpoint. Confirm the selection by pressing the [P] button. The display then switches back to the menu level again.	

Menu level

5.4.4. Safety parameters

| Menu level | Parameterisation level |
| :--- | :--- | :--- | :--- |
| Setting up the user code, u.code: | |
| Default: ooco | |

Menu level		Parameterisation level
	Γ	$-\Sigma L$
	Back to menu group level, ret:	
	Δ	

5.4.5. Analog output parameters

Menu level	Parameterisation level
$\begin{aligned} & \text { HぃLPL } \\ & \|\nabla \triangle \Delta\| \end{aligned}$	Selection reference of analog output, OutPt: Default: actua P Ratur Mi nuR MRHUR HaLd RUL Ean5t \square IFF The analog output signal can refer to different functions, in detail these are the current measurand, the min-value, the max-value, the totaliser-/sum function, the constant value or the difference between current measurand and constant value. If Hold is selected, the signal of the analog output will be kept. It can be continued processing after a deactivation of Hold. With [P] the selection is confirmed and the device changes into menu level.
$\begin{aligned} & \text { GLLITI } \\ & \nabla \nabla \Delta \end{aligned}$	Selection analog output, Out.rA: Default: 4-20 $P \quad \square-I \square \frac{\Delta}{\nabla} \square-\Sigma \square \frac{\Delta}{\nabla} \square 4-\Omega \square \frac{\Delta}{\nabla} P$ Three output signals are available $0-10$ VDC, $0-20 \mathrm{~mA}$ and $4-20 \mathrm{~mA}$. Select the demanded signal with this function.

Menu level	Parameterisation level	
$\begin{aligned} & \text { GぃLEV } \\ & \|\nabla \Delta\| \end{aligned}$	Setting the final value of the analog output，Out：En： Default： 10000 The final value is adjusted from the smallest to the highest digit with［ $\mathbf{\Delta}$ ］［ \mathbf{V} ］and confirmed digit per digit with $[\mathrm{P}]$ ．A minus sign can only be parameterised on the highest digit．After the last digit the device changes back into menu level．	
	Setting the initial value of the analog output，Out．OF： Default：ooooo The initial value is adjusted from the smallest to the highest digit with［ $\mathbf{\Delta}$ ］［ \mathbf{V} ］and confirmed digit per digit with［P］．A minus sign can only be parameterised on the highest digit．After the last digit the device changes back into menu level．	
$\begin{aligned} & \square F L \square \\| \\ & \|\nabla \Delta \Delta\| \end{aligned}$	Overflow behaviour，O．FLoU： Default：edge EdEL La．End LG．DFF La．IIIn La．MRH \square To recognise and evaluate faulty signals，e．g．by a controller，the overflow behaviour of the analog output can be defined．As overflow can be seen either EdGE，that means the analog output runs on the set limits e．g． 4 and 20 mA ，or to．OFF（input value smaller than initial value， analog output switches on e．g． 4 mA ），to．End（higher than final value，analog output switches on e．g． 20 mA ）．If to．Mln or to．MAX is set，the analog output switches on the smallest or highest possible binary value．This means that values of e．g． $0 \mathrm{~mA}, 0 \mathrm{VDC}$ or values higher than 20 mA or 10 VDC can be reached．With［P］the selection is confirmed and the device changes into menu level．	
$\begin{array}{ll} & -E L \\ \nabla \nabla \Delta \mid \end{array}$	Back to menu group level，ret： With［P］the selection is confirmed and the device changes into menu group level „－out－＂．	

5.4.6. Relay functions

Menu level

Menu level	Parameterisation level		
$\begin{aligned} & \text { La\|T- } \\ & \nabla \nabla \Delta \end{aligned}$	Alarms for re Default： a .1 R．i The allocation alarms can be ［P］the selectio	lay 1, Com－： R． 2 of the alarms to rela chosen．This parame is confirmed and the	
	Logic relay 2， Default：or Here，the switch describes thes	Log－2 $\pi \square$ ching behaviour of functions with inclu	\square nRind ay is defined via a logic link，the following schema Al_{-1} and $\mathrm{AL}-2$ ．
	$\square \mathrm{r}$	A1 v A2	As soon as a selected alarm is activated，the relay operates．Equates to operating current principle．
	Mロr	$\overline{A 1 \vee A 2}=\overline{A 1} \wedge \overline{A 2}$	The relay operates only，if no selected alarm is active．Equates to quiescent current principle．
	Mra	A1 \wedge a2	The relay operates only，if all selected alarms are active．
	のワー』	$\overline{A 1 \wedge A 2}=\overline{A 1} \vee \overline{A 2}$	As soon as a selected alarm is not activated，the relay operates．
	With［P］the selection is confirmed and the device changes into menu level．		

5.4.7. Alarm parameters

Menu level

Menu level	Parameterisation level
$\begin{array}{\|l\|l\|l\|} \hline L & I & i \\ \hline \nabla & \Delta \end{array}$	Threshold values／Limit values， $\mathrm{Ll}-1$ ： Default： 2000 The limit value defines the threshold，that activates／deactivates an alarm．
$\begin{aligned} & H U-i \\ & \|\nabla \Delta\| \end{aligned}$	Hysteresis for threshold values， HY_{-1} ： Default：00000 The delayed reaction of the alarm is the difference to the threshold value，which is defined by the hysteresis．
$\begin{aligned} & F F_{\perp}- \\ & \|\nabla \Delta\| \end{aligned}$	Function for threshold value undercut／exceedance，Fu－1： Default：high HILH Lawn \square A limit value undercut is selected with loun（for LOW＝lower limit value），a limit value exceedance with High（for HIGH＝higher limit value）．If e．g．limit value 1 is on a threshold leve of 100 and allocated with function High，an alarm is activated by reaching the threshold level．If the threshold value was allocated to Low，an alarm will be activated by undercutting the threshold value，as long as the hysteresis is zero．
	Switching－on delay，ton－1： Default：ooo For limit value 1 one can preset a delayed switching－on of 0－100 seconds．
$\begin{aligned} & E \square F-i \\ & \|\nabla \Delta\| \end{aligned}$	Switching－off delay，tof－1： Default： 000 For limit value 1 one can preset a delayed switching－off of 0－100 seconds．
$\begin{aligned} & \square \sim E L \\ & \|\nabla \Delta\| \end{aligned}$	Back to menu group level，r et： With［P］the selection is confirmed and the device changes into menu group level „－Ah－＂．

The same applies for Al_{2} to al8．

5.4.8. Totaliser (Volume metering)

Menu level

| Menu level | Parameterisation level |
| :--- | :--- | :--- |

Programming interlock:

Description see page 13, menu level run

6. Reset to default values

To return the unit to a defined basic state, a reset can be carried out to the default values.
The following procedure should be used:

- Switch off the power supply
- Press button [P]
- Switch on voltage supply and press [P]-button until „----" is shown in the display.

With reset, the default values of the program table are loaded and used for subsequent operation. This puts the unit back to the state in which it was supplied.

Caution! All application-related data are lost.

7. Alarms / Relays

This device has 4 virtual alarms that can monitor one limit value in regard of an undercut or exceedance. Each alarm can be allocated to an optional relay output S1-S2; furthermore alarms can be controlled by events like e.g. hold-value or min-/max-value.

Function principle of alarms / relays	
Alarm / Relay \mathbf{x}	deactivated, instantaneous value, min-/max-value, hold-value, totaliser value, sliding average value, constant value, difference between instantaneous value and constant value or an activation via the digital input
Switching threshold	Threshold / limit value of the change-over
Hysteresis	Broadness of the window between the switching thresholds
Working principle	Operating current / Quiescent current

Operating current

By operating current the alarm S1-S2 is off below the threshold and on on reaching the threshold.

Quiescent current

By quiescent current the alarm S1-S2 is on below the threshold and switched off on reaching the threshold.

Switching-on delay

The switching-on delay is activated via an alarm and e.g. switched 10 seconds after reaching the switching threshold, a short-term exceedance of the switching value does not cause an alarm, respectively does not cause a switching operation of the relay. The switching-off delay operates in the same way, keeps the alarm / the relay switched longer for the parametrised time.

8．Programmer examples

Examples：Adjustment according to number of sprockets at unknown rotation speed．

－nearly 100% of the rotation speeds are in the range of 0 to 30.000 r．p．m．
－the number of sprockets varies（without gearing）between 1 and 100
－in automation，the frequency supply never exceeds 10 kHz （rather 3 kHz ）

Assume a rotation speed of 60 r．p．m．at 1 Hz ，whereat the real frequency value will

 not be considered．Our example complies with a number of sprockets of 64 ．

Setting up the advice

Based on the default settings of the display，the following parameters need to be changed：

Parameter	Settings	Description
LYPE	Fr－EMu	Applying of the measuring signal is not applicable．
－RのLE	153	Complies with 9.9999 Hz
End	\square	Assumed final value
EndR	OTOLIU	Complies with 64 sprockets

If the frequency needs to be displayed with a position after decimal point，then a 60 has to be selected as final value for this adjustment．

Parameter	Settings	Description
L $\unlhd 口 \underline{\square}$	FrEGL	Applying of the measuring signal is not applicable．
－MnEE	153	Complies with 9.9999 Hz
Eのロ	$\square \square$	Assumed final value
$\square \square$	\square	1 position after decimal point
Eのロ日	7．0154	Complies with 64 sprockets

Example：Rotation speed of a machine shaft

There are 4 sprockets on one machine shaft．Applied in an angle of 90° to each other and to the rotation speed measurement．The sprockets are collected via a proximity switch and evaluated by the frequency device，which shall display the rotation speed in U／min． $0 . .3600 \mathrm{U} / \mathrm{min}$ is preset as rotaion speed range of the machine．

Calculation of the input frequency

Number of sprockets＝ 4
Rotation speed $\quad=3600 \mathrm{U} / \mathrm{min}$

Setting up the device

Based on the default settings of the device，following parameters need to be changed：

Parameter	Settings	Description
L \ddagger F	FrEGH	As the input frequency is known，the device does not need to be applied to the measuring section．
－RnEE	1ROET	The final frequency is in the range of 100.00 to 999.99 Hz ．
Ena	Зロロロ	A rotation speed of 3600 shall be displayed as final value．
Eのロロ	こム品吅	The final frequency for display value 3600 is 24.00 Hz ．

9. Technical data

Output	
Sensor supply	$24 \mathrm{VDC} / 50 \mathrm{~mA} ; 12 \mathrm{VDC} / 50 \mathrm{~mA} ; 5 \mathrm{VDC} / 20 \mathrm{~mA}$
Analog output	0/4-20 mA / burden 350Ω or 0-10 VDC / $10 \mathrm{kOhm}, 16$ Bit
Switching output	
Relay with change-over contact Schaltspiele	250 VAC / 5 AAC; 30 VDC / 5 ADC 30×10^{3} at 5 AAC, 5 ADC ohm resistive burden 10×10^{6} mechanically Division according to DIN EN50178 / Characteristics accrording to DIN EN60255
Memory	EEPROM
Data life	≥ 100 years at $25^{\circ} \mathrm{C}$
Ambient conditions	
Working temperature	$0^{\circ} \ldots 50^{\circ} \mathrm{C}$ for panel meters, $-20^{\circ} \ldots 60^{\circ} \mathrm{C}$ for built-on devices
Storing temperature	$-20 . .80^{\circ} \mathrm{C}$
Weathering resistance	relative humidity $0-80 \%$ on years average without dew
Height	up to 2000 m above sea level
EMV	EN 61326
CE-sign	Conformity according to directive 2004/108/EG
Safety standard	Accroding to low voltage directive 2006/95/EG EN 61010; EN 60664-1

10. Safety standard

Please read the following safety advice and the assembly chapter 1 before installation and keep it for future reference.

Proper use

The ADI-1F-device is designed for the evaluation and display of sensor signals.

Danger! Careless use or improper operation can result in personal injury and/or damage to the equipment.

Control of the device

The panel meters are checked before dispatch and sent out in perfect condition. Should there be any visible damage, we recommend close examination of the packaging. Please inform the supplier immediately of any damage.

Installation

The ADI-1F-device must be installed by a suitably qualified specialist (e.g. with a qualification in industrial electronics).

Notes on installation

- There must be no magnetic or electric fields in the vicinity of the device, e.g. due to transformers, mobile phones or electrostatic discharge.
- The fuse rating of the supply voltage should not exceed a value of 6A N.B. fuse.
- Do not install inductive consumers (relays, solenoid valves etc.) near the device and suppress any interference with the aid of RC spark extinguishing combinations or free-wheeling diodes.
- Keep input, output and supply lines separate from one another and do not lay them parallel with each other. Position "go" and "return lines" next to one another. Where possible use twisted pair. So, you receive best measuring results.
- Screen off and twist sensor lines. Do not lay current-carrying lines in the vicinity. Connect the screening on one side on a suitable potential equaliser (normally signal ground).
- The device is not suitable for installation in areas where there is a risk of explosion.
- Any electrical connection deviating from the connection diagram can endanger human life and/or can destroy the equipment.
- The terminal area of the devices is part of the service. Here electrostatic discharge needs to be avoided. Attention! High voltages can cause dangerous body currents.
- Galvanic insulated potentials within one complex need to be placed on a appropriate point (normally earth or machines ground). So, a lower disturbance sensibility against impacted energy can be reached and dangerous potentials, that can occur on long lines or due to faulty wiring, can be avoided.

11. Error elimination

	Error description	Measures
1.	The device shows a permanent overflow	- The input frequency is too high for the selected frequency range. Correct „range" according to this. - Disturbing pulses lead to an increased input frequency, activate "ff.fra" at smaller frequencies or shield the senor line. - A mechanic switching contact chatters. Activate the frequency filter „fifra" with 10 or 20 kHz . - The display was taught faulty under „type" = „Sens.f". Error elimination see below.
2.	The device shows a permanent underflow.	- An offset frequency „offsa" bigger than 0 Hz respectively a „Living Zero" was selected, in which no frequency is aligned. Check the sensor lines or set the "offsa" onto 0 Hz . - The display underflow dl.und was selected too high. The accroding parameter needs to be adapted. - The device was taught faulty under „type" = „Sens.f. Error elimination see below.
3.	The displayed values switches sporadical.	- Disturbances lead to short-term display switches. For smaller frequences use the frequency filter „Fi.fra", select a higher measuring time or use the sliding averaging. - The sprockets that needs to becollected, are not evenly spread on a shaft or are not Use the sliding averaging „Avg" if necessary with the dynamic function „Step". The displayed value „displ" needs to be set on „AVG".
4.	The display remains on zero.	- The sensor was not connected properly. Check the connection lines and if necessary the sensor supply. Best directly on the screw terminals of the device! - A PNP- respectively NPN-output does not reach the required threshold. Check the voltage between terminal 2 and 3 with a Multimeter. Depending on signal form it generally shoud be between 4 V and 15 V . The thresholds can be checked more safely with an oscilloscope. If necessary include an external Pull-up or Pull-down. - A Namur-sensor does not react. Check the distance between the sensor and the sprocket / survey mark and if necessary measure the voltage between 1 and 3 . In open condition the input voltage needs to be smaller than $2,2 \mathrm{~V}$ sein and in active condition bigger than $4,6 \mathrm{~V}$. - The selected range of the input frequency is too high. Reduce the frequency range „range" to a smaller value. - The activated frequency filter „Fi.fr"" suppresses the relevant pulses. Increase the filter frequency „ff.frq" or use the adaption of the key proportion "ffirat". If this should not work, temporarily de-activate the frequency filter with "fiffra" $=$ "no". - The device was taught faulty under „type" = "Sens.f". Change into "Type" „Frequ" and preset the assumed frequency range "range" and the according initial and final values „end", „off", „Enda", and „offsa". So you can check if a frequency signal was connected to the input.
5.	The device shows „HELP" in the 7 -segment display	- The device located an error in the configuration memory, excecute a reset to the default values and set up the device according to your application.
6.	Program numbers for the parameterisation of the input are not available	- The programming intlock is activated. - Enter correct code.
7.	The device shows „Em" in the 7 -segment display	- Contact the manufactuer if errors of this kind occur.
8.	The device does not react as expected.	- If you are not sure, that the device has been parameterised before, restore the state of delivery as described in chapter 6.

12. Disposal

Note!

- Avoid environmental damage caused by media-contaminated parts
- Dispose of the device and packaging in an environmentally friendly manner
- Comply with applicable national and international disposal regulations and environmental regulations.

Batteries

Batteries containing pollutants are marked with a sign consisting of a crossed-out garbage can and the chemical symbol ($\mathrm{Cd}, \mathrm{Hg}, \mathrm{Li}$ or Pb) of the heavy metal that is decisive for the classification as containing pollutants:

Cd^{1}

Hg^{2}

Pb^{3}

Li^{4}

1. „Cd" stands for cadmium
2. Hg" stands for mercury
3. „Pb" stands for lead
4. Li" stands for lithium

Electrical and electronic equipment

13. EU Declaration of Conformance

We, KOBOLD Messing GmbH, Hofheim-Ts, Germany, declare under our sole responsibility that the product:

Universal Indicating Unit Model: ADI-1F...
to which this declaration relates is in conformity with the standards noted below:
EN 61010-1:2010+A1:2019+A1:2019/AC:2019 Safety requirements for electrical equipment measurement, control and laboratory use -

Part 1: General requirements
EN 61326-1:2013 Electrical equipment for measurement, control and laboratory use - EMC requirements - Part 1: General requirements

EN 63000:2018 Technical documentation for the assessment of electrical and electronic products with respect to the restriction of hazardous substances

Also the following EC guidelines are fulfilled:

2014/30/EU	EMC Directive
2014/35/EU	Low Voltage Directive RoHS
$2011 / 65 / E U$	Delegated Directive (RoHS III)

H. Volz

General Manager

M. Wenzel

Proxy Holder

14.UK Declaration of Conformity

We, KOBOLD Messring GmbH, Hofheim-Ts, Germany, declare under our sole responsibility that the product:

Universal Indicating Unit
Model: ADI-1F
to which this declaration relates is in conformity with the standards noted below:
BS EN 61326-1:2013
Electrical equipment for measurement, control and laboratory use. EMC requirements. General requirements

BS EN 61010-1:2010+A1:2019

Safety requirements for electrical equipment for measurement, control, and laboratory use. General requirements

BS EN IEC 63000:2018
Technical documentation for the assessment of electrical and electronic products with respect to the restriction of hazardous substances.

Also, the following UK guidelines are fulfilled:
S.I. 2016/1091 Electromagnetic Compatibility Regulations 2016
S.I. 2016/1101 Electrical Equipment (Safety) Regulations 2016
S.I. 2012/3032 The Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment Regulations 2012

Hofheim, 15 Feb. 2023

H. Volz

General Manager

M. Wenzel

Proxy Holder

